Paris
EE

N IP PARIS

3 Network Programming

L. Pautet
Version EN, 2.0

L. Pautet 1

‘ IP, UDP et TCP

= IETF has defined a series of protocols:
= IPv4 and IPv6 for addressing machines;
= TCP and UDP for exchanging messages over IP:

= These are basic standards from a user point of view

= Other protocols concern physical or application
aspects

= The IETF only defines a message format and the
controllers for establishing connections, exchanging
messages, handling errors, fragmentation, etc.

L. Pautet page 2

TCP/IP model Protocols and services

0S| model

G Y ' '
HTTP. FTTP. | Application |
Application Telnet, NTP, [Presentalion]
X) PR [Session]
[Transport TCP, UDP [Transport]
[Network IP. ARP, ICMP, |5Mp[Network]
Ne'wofk Emerne' [Dala Unk]
Interface [Physical]

L. Pautet

* OSI Model vs TCP/IP Model

page 3

OSI Model — Presentation layer
Heterogenous systems

Endianness designates the byte ordering in memory

A big-endian system stores the most significant byte of
an integer at the smallest memory address

For internet protocols, the network order is big-
endianness.

Functions convert 16-bit and 32-bit integers between
network byte order and host byte order

= htonl(net_long host_long)

= htons(net_short host_short)

= ntohl(host_long net_long)

= ntohs(host_short net_short)

L. Pautet page 4

‘ IPv4 address space

= [Pv4 uses 32_bit addresses with a quad-dotted
decomposition:
= 137.194.2.34, netid = 137.194, hostid = 2.34

= An IPv4 address is divided into two parts: netid et hostid
= Netid : network identifier
= Hostid : host identifier

= Used for routing and network interface identification

= [Pv6 was developed by the IETF to deal with IPv4
address exhaustion. Supposed to replace IPv4 but the
move is complex.

L. Pautet page 5

IPv4 address space

= The netid is partitioned into network classes:

= Class A, netid coded on 1 byte (leading bits 0):
= Addresses from 1.0.0.0 to 126.0.0.0 (127 : specific to localhost)

= Class B, netid coded on 2 bytes (leading bits 10) :
= Addresses from 128.0.0.0 to 191.255.0.0

« Class C, netid coded on 3 bytes (leading bits 110) :
= Addresses from 192.0.0.0 to 223.255.255.0

= Class D (multicast), netid on 3 bytes (leading bits 1110)
= Addresses from 224.0.0.0 to 239. 255.255.0

L. Pautet page 6

ﬁ IPv4 address space

= Specific addresses

= 127.0.0.1 : « localhost », loopback address
= 0.0.0.0 : invalid address

= Reserved private IPv4 addresses :

= Class A : netid 10, hostid 0.0.1 to 255.255.255

= Class B : netid 172.16.0 to 172.31, hostid 0.0 to
255.255

= Class C : netid 192.168 to 192.168, hostid0.0 to
255.255

L. Pautet page 7

TCP vs UDP

TCP: connection oriented protocol above IP (phone)
= Reliable protocol (with error handling)
= Max packet size (MTU), segmentation mechanism
= Guaranteed opening, routing and closing of the connection
= Flow management mechanism to avoid saturating the network
(Nagle algo)
UDP: message oriented protocol above IP (postal mail)
= No guarantee of routing or reception order
= If "everything is fine » (LAN), we avoid the complexity of TCP
= Useful for light applications, soft real time (multimedia)

L. Pautet page 8

BSD Sockets
‘ An API for IP, TCP and UDP

= No API defined by the IETF

= BSD Sockets: model and API used in Unix
» Adapted for other platforms, including Windows

= Inspired by the Unix resource model:
= Every resource is a file (same for sockets)

= Connection oriented sockets follow producer /
consumer semantics (pipe) and are used with open /
read / write / close traditional file operations

= Message oriented sockets are used with open / send
/ recv / close operations (still close to file operations)

L. Pautet page 9

i What is a socket ?

s Socket

= An IP address and a port number
= When created, comes with sending and receiving
buffers
= Socket pair
= Specify the two end points

= TCP : same end points (connection)
= UDP : specify receiver or sender end point for each call

= 4-tuple: (client IP addr + port, server IP addr + port)

L. Pautet page 10

Overview

Canal de communications

Pautet et al

O Machine O Machine
Processus Processus
sin_port sin_port

Interface Interface

réseau réseau

IP— IP—

sin_addr sin_addr
Num. Ethernet Carte ethernet Num. Ethernet Carte ethernet
Cable ethernet Cable ethernet

Canal de communications

11

Connection-Oriented Protocol
TCP on client side

= The caller (client calling a service of a server):
= Create a socket and allocate buffers

= Build the network address (IP address + port)
= Server identified by its IP address (or its name) and its port
= Use predefined IP addresses (INADDR_LOOPBACK)
= Get IP address from name with gethostbyname (DNS)
= No name directory for ports, only reserved ports (IPPORT_RESERVED)

= Connect to the server (three-way handshake)
Read from or write to the socket
= Close the socket

L. Pautet page 12

1.

2.

Connection-Oriented Protocol
Canvas of a TCP client

Build the server address
Request to a directory for hosts (but not for ports)
gethostbyname is blocking (request to a predefined name server)

Request a connection with server

sock = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr server_addr;
server_addr.sin_addr = gethostbyname(« www.enst.fr »);

server_addr.sin_port = server_port;
connect(sock, &server_addr, sizeof(struct sockaddr));

L. Pautet page 13

Connection-Oriented Protocol
Ping Pong TCP client

int main() {
int sock = socket(AF_INET, SOCK_STREAM, 0);
sockaddr_in addr = {.sin_family = AF_INET,
.sin_port = htons(8080),
.sin_addr.s_addr = INADDR_LOOPBACK};
connect(sock, (struct sockaddrx)&addr, sizeof(addr));
int msg;
while(1) {
msg = 1; // Ping
write(sock, &msg, sizeof(msg));
read(sock, &msg, sizeof(msg));
printf('"Received: %s\n", msg == 2 ? "Pong" : "?");
sleep(1);

Pautet et al 14

Connection-Oriented Protocol
i TCP on server side

= The callee (or server and its service):
= Create a server socket
= Associate address (IP address + port) to socket
= Limit number of pending connections
= Wait for incoming connections

= For each incoming connection:
= Accept the connection (a new socket is created);
= Read from or write to the new socket
= Close the new socket

L. Pautet page 15

Connection-Oriented Protocol
Ping Pong TCP server

int main() {

int server_fd = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in addr = {.sin_family = AF_INET,
.sin_port = htons(8080),
.sin_addr.s_addr = INADDR_ANY};

bind(server_fd, (struct sockaddr x)&addr, sizeof(addr));

listen(server_fd, 1);

int client_fd = accept(server_fd, 0, 0);

int msg;

while (1) {
read(client_fd, &msg, sizeof(msg));
printf("Received: %s\n", msg == 1 ? "Ping" : "?");

msg = 2; // Pong
write(client_fd, &msg, sizeof(msg));

Pautet et al

16

Connection-Oriented Protocol
i TCP Sequential Management

Machine B
Processus serveur

1b.- socket (—>O<—\

2b.- bind Socket d'écoute
3b.- listen

Machine A

Processus client

2a.- connect 4b- acc(e

pt.,
/ 4 "“‘
la.- socket p /} f
J) a

I . .
ﬁ Communications ~ Socket de communication

bidirectionnelles ™. .-
entre client et
serveur

L. Pautet page 17

Connection-Oriented Protocol
i TCP on a Multi-Threaded Server

= Create a server socket (for incoming connection)
= Wait for a connection request (from a client)
= Create a new socket to handle client connection

= Concurrent management
= 2 sockets (server socket + new socket)

= 2 threads (or processes) => Use of patterns
= Leader / Followers (leader accepts & delegates to followers)
= Half/Sync — Half/Async (accept, connect, read, write block)
= EXxecutor service

L. Pautet page 18

Connection-Oriented Protocol
i Ping Pong Multi-Threaded Server

void* handle(voidx fd) {
int cfd = *x(intx)fd;
while (1) {
int msg;
read(cfd, &msg, sizeof(msg));
write(cfd, &(int){2}, sizeof(int));

}

int main() {
int sfd = socket(AF_INET, SOCK_STREAM, 0);
struct sockaddr_in addr = {AF_INET, htons(8080), INADDR_ANY};
bind(sfd, (struct sockaddrx)&addr, sizeof(addr));
listen(sfd, 5);
while (1) {
intx cfd = malloc(sizeof(int));
xcfd = accept(sfd, 0, 0);
pthread_t t;
pthread_create(&t, 0, handle, cfd);

L. Pautet page 19

Connection-Oriented Protocol
i TCP Concurrent Management 1

= Communication with a first client

L. Pautet page 20

Connection-Oriented Protocol
‘ TCP Concurrent Management 2

= Communication with a second client

Machine A Machine B
Processus client P1 .- -f="=Filsdes Processus
‘ ~., S S
0
"
Comm T -
P1/
Socket d
Machine C
P s client P2
2. connect
1. socket

L. Pautet page 21

CLIENT

| s = socket() I

write(s) I

-
read(s) I

close(s)

TCP
Blocking operations

SERVEUR

s = socket()

bind (s,ADR)

listen (s)

s2 = accept(s)

LB

Transfert de
données read(s2)
- write(s2)
close(s2)
L. Pautet

I appel pouvant etre bloquant

I appel non bloquant

page 22

C API TCP socket
i on server and client sides

= socket() = socket(domain, type, protocol)
= Create a socket: index from open file table
= domain = AF_INET or PF_INET
» type = SOCK_STREAM (TCP), protocol = 0

= bind(sock, &server_addr, server_addr_len);
= Bind socket to one of the host addresses & ports:

= SOck socket id returned by socket()
= server_addr structure including address and port
= Server_addr_len size of structure (sizeof)

L. Pautet page 23

C API TCP socket
on server side

= On the server side

=« listen(server_fd, nb_clients)
=« Set maximum length for the queue of pending connections

= accept(server_fd, &client_addr, & client_addr_len)

= Extract the first connection request on the queue of pending
connections and create a new socket client_fd with same
properties of server_fd

« Client_addr is filled in with the address of the client, the
format is determined by the domain in which the
communication is occurring.

L. Pautet page 24

C API TCP socket
on client side

= On the client side

= connect(sock, &server_addr, server_addr_len)
= Initiate a connection on a socket

= Attempt to make a connection to another socket on the
server side. The other end point is specified by server_addr,
which includes an IP address and a port.

L. Pautet page 25

C API TCP socket
on server and client sides

1. Standard functions for files:
= read/write(sock, message, message_len)

2. Specific function (fine grain control):

= send/recv(sock, message, message_len, option)
= Example of option : MSG_PEEK

= Peeks at an incoming message. The data is treated as
unread and the next recv() or similar function shall still
return this data

L. Pautet page 26

Message-Oriented Protocol
UDP client or server side

= Client (caller) :
= Create a socket ;

= Server (callee) :
= Create a socket ;

= sendto or recvfrom on socket = Bind socket to an address
(IP address + port)

= sendto or recvfrom on socket

appel bloquant
|:] appel non bloquant

Machine A

Machine B

1 - sod

ket

d

Processus serveur

O
BEIGHSEN)

sendto(s§ EM)

-’

Processus client 2 - bin
1 - socke Communications
bidirectionnelles
sepdto(s,ADR) ’))
sy
L. Pautet

page 27

Message-Oriented Protocol
‘ UDP client or server side

= Send a message through connectionless-mode
socket (or connection-mode but address ignored)
= sendto(sock, message, message_len, O,
&receiver_addr, receiver_addr_len)
= Receive a message from connectionless-mode
socket (or connection-mode but useless)

» recvfrom(sock, message, message_len, flags,
&sender_addr, & sender_addr_len)

= sender_addr allows the application to retrieve the
source address of received data

L. Pautet 28

Message-Oriented Protocol
Ping Pong UDP server

int main() {
int sock = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in addr = {AF_INET, htons(8080), INADDR_ANY};
bind(sock, (struct sockaddrx)&addr, sizeof(addr));
while (1) {
struct sockaddr_in client_addr;
socklen t len = sizeof(client_addr);
int msg;
recvfrom(sock, &msg, sizeof(msg), 0,
(struct sockaddrx)&client_addr, &len);
sendto(sock, &(int){2}, sizeof(int), O,
(struct sockaddrx)&client_addr, len);

L. Pautet page 29

Message-Oriented Protocol
Ping Pong UDP client

int main() {
int sock = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in addr =
{AF_INET, htons(8080), INADDR_LOOPBACK};
while (1) {
sendto(sock, &(int){1}, sizeof(int), 0O,
(struct sockaddrx)&addr, sizeof(addr));
int reply;
recvfrom(sock, &reply, sizeof(reply), 0,
NULL, NULL);
sleep(1);
¥
¥

L. Pautet page 30

TCP and UDP multiplexing
overview

Monitors multiple file descriptors (sockets) simultaneously to detect
when they become "ready" for I/O operations (read/write/error),
avoiding busy-waiting.
Synchronous I/0 Multiplexing

= Checks sockets in user-space (no kernel callbacks)

= Returns when any socket is ready or timeout occurs
Advantages:

= Dedicated threads per socket inefficiently use resources

= Single-threaded concurrency (no threads/processes needed)

= Portable (works on all POSIX systems)

= Efficient for small-scale socket monitoring

= O(n) time complexity (linearly scans all descriptors)

Pautet et al 31

TCP and UDP multiplexing
select()

int select(int nfds, // Highest fd
fd_set xreadfds, // Check readability
fd_set xwritefds, // Check writability
fd_set xexceptfds, // Check exceptions

struct timeval xtimeout); // Max wait time (NULL = forever)

= File Descriptor Sets:
= readfds: Sockets with incoming data (avoid read() blocking)
= writefds: Sockets ready for sending (avoid write() blocking)
= exceptfds: Sockets with errors (e.g., TCP out-of-band data)
= Events:
= acceptis considered as a read operation
= connectis considered as a write operation

L. Pautet page 32

TCP and UDP multiplexing
i bit sets or masks

= Bitsets is a simple set data structure
= nisin the bitset s if (s && 2n) is true

= FD_CLR(fd, &fdset)
= Clear the bit for the file fd in the file set fdset.

= FD_ISSET(fd, &fdset)

= Return a non-zero value if the bit for the file fd is set in the file
set pointed to by fdset, and 0 otherwise.

= FD_SET(fd, &fdset)
= Ses the bit for the file fd in the file set fdset.

= FD_ZERO(&fdset)

= Initialise the file set fdset to have zero bits for all files.

L. Pautet page 33

TCP and UDP multiplexing
Multiple Ping Pong Sequential Server

int s = socket(..);
struct sockaddr_in a = {..};
bind(s, ..);
listen(s, 5);
fd_set fds;
int max = s, cl[16] = {0};
while (1) {
FD_ZERO(&fds) ;
FD_SET(s, &fds);
for (int 1 = 0; 1 < 16; i++)
if (c[i] > 0)
FD_SET(c[i], &fds);
select(max + 1, &fds, 0, 0, 0);

Pautet et al

if (FD_ISSET(s, &fds)) {
for (int 1 = 0; 1 < 16; i++)
if ('cli]) {
c[i] = accept(s, 0, 0);
if (c[i] > max) max = cl[i];
break;

}
}
for (int 1 = 0; i < 16; i++)
if (c[i] &&
FD_ISSET(c[i], &fds)) {

int m;

if (read(c[i], &m, 4) <= 0)
cli] = 0;

else

write(c[i], &(int){2}, 4);

34

TCP and UDP
Other Utilities

Retrieve information about hosts (blocking read operations)
= gethostbyaddr(struct sockaddr *HostAddr, int HostAdddrLen, int Type);
= gethostbyname(char *HostName),
= gethostent()
Retrieve local information about ports (tcp/udp, id, name)
= getservbyport(int Port, char *Proto)
= getservbyname(char *Nom, char *Proto)
Retrieve information about address or port of the specified socket
= getsockname(Socket, &sa, &len)
= getpeername(Socket, &sa, &len)
Shutdown socket (all or part)
= Shutdown(Socket, Direction)
= close(Socket)

L. Pautet page 36

TCP and UDP
Summary on Sockets

Powerfull API:
« Multicast, asynchronous behaviour (O_NONBLOCK)...

... but requires additional tools ...
= EXxecutor services, Design Patterns ...

... data conversions ...
= htons,

... and a lot of programming ...

L. Pautet page 37

Middleware vs Sockets
Programming

= Middleware = Sockets Programming
= Abstraction layer for distributed = Low-level network communication
systems communication = Pros:
= Pros = Maximum performance & control
= Faster development = No middleware dependencies
= Built-in scaling, fault tolerance = Ideal for custom protocols

= Cross-platform compatibility

= Semantics: = When to Use
= Akka (actor-based messaging) = Middleware: Complex systems,
= MQTT (pub/sub for IoT) interoperability
= CORBA (distributed objects) = Sockets: Latency-sensitive
applications

Pautet et al 38

