
Concurrent programming in Rust
4SE05

Léopold Clément

Télécom Paris

2025-04-04

Outline

Concurency in Rust . 2
Safty guarantiees in Rust . 5

Concurrent primitive for threaded concurrency . 17
Threads . 18
Mutex . 25
Channel mpsc . 31

Async/await, Future and cooperative concurrence . 36
Getting two pages at the same time . 37
Implementation in Rust . 44

Conclusion . 55

Léopold Clément Concurrent programming in Rust 2025-04-04 1 / 58

Concurency in Rust

Why use Rust

For example, introducing parallelism in Rust is a relatively low-risk
operation: the compiler will catch the classical mistakes for you.

— The rust book, foreword

By leveraging ownership and type checking, many concurrency errors are
compile-time errors in Rust rather than runtime errors.

— The rust book, chapter 16

Léopold Clément Concurrent programming in Rust 2025-04-04 3 / 58

Two types of concurrency

Léopold Clément Concurrent programming in Rust 2025-04-04 4 / 58

Two types of concurrency

• Threaded concurrency
‣ Based on threads, like in C
‣ Good for compute-bound workloads,

Léopold Clément Concurrent programming in Rust 2025-04-04 4 / 58

Two types of concurrency

• Threaded concurrency
‣ Based on threads, like in C
‣ Good for compute-bound workloads,

• Asynchronous concurrency
‣ Based on futures / promise / task / async functions
‣ Seen in Python, JavaScript/TypeScript
‣ Good for IO-bound workloads,
‣ Used in embassy (cf 4SE02)

Léopold Clément Concurrent programming in Rust 2025-04-04 4 / 58

Concurency in Rust
Safty guarantiees in Rust

Safty guarantiees in Rust

The borrow checker

The borrow checker quarantees that there is either only one mutable reference
to a value, or multiple inmutable.

Léopold Clément Concurrent programming in Rust 2025-04-04 6 / 58

Safty guarantiees in Rust

The borrow checker

The borrow checker quarantees that there is either only one mutable reference
to a value, or multiple inmutable.

Raw object cannot be shared between thread and be mutable.

Léopold Clément Concurrent programming in Rust 2025-04-04 6 / 58

Safty guarantiees in Rust

The borrow checker

The borrow checker quarantees that there is either only one mutable reference
to a value, or multiple inmutable.

Raw object cannot be shared between thread and be mutable.

To share object between threads and have mutability, you need to use some
synchronisation primitive.

Léopold Clément Concurrent programming in Rust 2025-04-04 6 / 58

Safty guarantiees in Rust

The borrow checker

The borrow checker quarantees that there is either only one mutable reference
to a value, or multiple inmutable.

Raw object cannot be shared between thread and be mutable.

To share object between threads and have mutability, you need to use some
synchronisation primitive.

Léopold Clément Concurrent programming in Rust 2025-04-04 6 / 58

Safty guarantiees in Rust

Sharing value with Rc

Rc is a smart pointer.

It can be cloned, and count the number of time was cloned.

It allow for an value to have a lifetime long enough for all the time it is used.

fn rc_to_thread() {
 let a = Rc::from(1);
 let b = a.clone();
 let j = spawn(move || println!("val = {}", *b));
 j.join();
}

Léopold Clément Concurrent programming in Rust 2025-04-04 7 / 58

Safty guarantiees in Rust

Sharing value with Rc, errors!

error[E0277]: `Rc<i32>` cannot be sent between threads safely
 --> src/main.rs:90:19
 |
90 | let j = spawn(move || println!("val = {}", *b));
 | ----- -------^^^^^^^^^^^^^^^^^^^^^^^^^
 | | |
 | | `Rc<i32>` cannot be sent between threads safely
 | | within this `{closure@src/main.rs:90:19: 90:26}`
 | required by a bound introduced by this call
 |
 = help: within `{closure@src/main.rs:90:19: 90:26}`, the trait `Send`
is not implemented for `Rc<i32>`

Léopold Clément Concurrent programming in Rust 2025-04-04 8 / 58

Safty guarantiees in Rust

The Send and Sync trait

The compiler implements those trait when possible :

Léopold Clément Concurrent programming in Rust 2025-04-04 9 / 58

Safty guarantiees in Rust

The Send and Sync trait

The compiler implements those trait when possible :

Send The value can be moved between threads.

Léopold Clément Concurrent programming in Rust 2025-04-04 9 / 58

Safty guarantiees in Rust

The Send and Sync trait

The compiler implements those trait when possible :

Send The value can be moved between threads.
Sync Reference to the value can be moved between threads.

Léopold Clément Concurrent programming in Rust 2025-04-04 9 / 58

Safty guarantiees in Rust

Sharing value with Arc

To share the ownership of a value of type T across threads boundaries, you
might use Arc<T> instead of Rc<T>.

Léopold Clément Concurrent programming in Rust 2025-04-04 10 / 58

Safty guarantiees in Rust

Sharing value with Arc

To share the ownership of a value of type T across threads boundaries, you
might use Arc<T> instead of Rc<T>.

Here the counter is atomic, so the compiler add the Send trait and the Arc can
be moved between threads.

Léopold Clément Concurrent programming in Rust 2025-04-04 10 / 58

Safty guarantiees in Rust

Sharing value with Arc

To share the ownership of a value of type T across threads boundaries, you
might use Arc<T> instead of Rc<T>.

Here the counter is atomic, so the compiler add the Send trait and the Arc can
be moved between threads.

Shared ownership does not permit mutability, Arc can only be deref into
inmutable reference.

Léopold Clément Concurrent programming in Rust 2025-04-04 10 / 58

Safty guarantiees in Rust

Primitives

Most of the primitives are defined in the std module.

Léopold Clément Concurrent programming in Rust 2025-04-04 11 / 58

Safty guarantiees in Rust

Primitives

Most of the primitives are defined in the std module.

• std
‣ atomics
‣ thread
‣ sync

– mutex
– channel

‣ future
‣ task

Léopold Clément Concurrent programming in Rust 2025-04-04 11 / 58

Safty guarantiees in Rust

Primitives

Most of the primitives are defined in the std module.

• std
‣ atomics
‣ thread
‣ sync

– mutex
– channel

‣ future
‣ task

You can build more complex primitives from basic primitives, or using unsafe
block.

Léopold Clément Concurrent programming in Rust 2025-04-04 11 / 58

Safty guarantiees in Rust

Atomics

Atomics lives in std::sync::atomics.

 use std::sync::atomic::{AtomicU16, Ordering};

 let atomic = AtomicU16::new(0);
 assert_eq!(atomic.load(Ordering::Relaxed), 0);
 atomic.store(1, Ordering::Relaxed);
 assert_eq!(atomic.fetch_add(10, Ordering::Relaxed), 1);
 assert_eq!(atomic.swap(100, Ordering::Relaxed), 11);
 assert_eq!(atomic.load(Ordering::Relaxed), 100);

Léopold Clément Concurrent programming in Rust 2025-04-04 12 / 58

Safty guarantiees in Rust

Atomics

Atomics lives in std::sync::atomics.

 use std::sync::atomic::{AtomicU16, Ordering};

 let atomic = AtomicU16::new(0);
 assert_eq!(atomic.load(Ordering::Relaxed), 0);
 atomic.store(1, Ordering::Relaxed);
 assert_eq!(atomic.fetch_add(10, Ordering::Relaxed), 1);
 assert_eq!(atomic.swap(100, Ordering::Relaxed), 11);
 assert_eq!(atomic.load(Ordering::Relaxed), 100);

The ordering is the same as in C++ 20

Léopold Clément Concurrent programming in Rust 2025-04-04 12 / 58

Safty guarantiees in Rust

Atomics : Ordering

Relaxed: only guarantee atomicity and modification order consistency,
AcqRel: also, things that append before/after a store in one threads append
before/after a read in another thread,
SeqCst: also, there is a single total modification order of all atomic operations
that are so tagged

Léopold Clément Concurrent programming in Rust 2025-04-04 13 / 58

Safty guarantiees in Rust

Atomics : Creating a mutex

pub struct SpinLockMutex{
 locked : AtomicBool,
}
impl SpinLockMutex {
 pub fn new() -> Self{
 SpinLockMutex { locked: AtomicBool::new(false) }
 }
 pub fn lock(&self) -> (){
 loop {
 let old_state = AtomicBool::swap(&self.locked, true, Ordering::AcqRel);
 if !old_state {return;}
 }
 }
 pub fn unlock(&self) -> (){
 AtomicBool::store(&self.locked, false, Ordering::AcqRel);
 }
}

Léopold Clément Concurrent programming in Rust 2025-04-04 14 / 58

Safty guarantiees in Rust

Interior Mutability

let atomic = AtomicU16::new(0);

pub fn swap(&self, val: bool, order: Ordering) -> bool
pub fn lock(&self) -> ()
pub fn unlock(&self) -> ()

Léopold Clément Concurrent programming in Rust 2025-04-04 15 / 58

Safty guarantiees in Rust

Interior Mutability

let atomic = AtomicU16::new(0);

pub fn swap(&self, val: bool, order: Ordering) -> bool
pub fn lock(&self) -> ()
pub fn unlock(&self) -> ()

In Rust, some type allows its value to be mutated even on not mutable
instances.

Léopold Clément Concurrent programming in Rust 2025-04-04 15 / 58

Safty guarantiees in Rust

Interior Mutability with Cell

Cell<T> is a container used to create interior mutability.

pub fn set(&self, val: T)
pub fn replace(&self, val: T) -> T
pub fn swap(&self, other: &Cell<T>)

Cell is not Send : it is not atomic from other threads, only from its own thread.

Léopold Clément Concurrent programming in Rust 2025-04-04 16 / 58

Concurrent primitive for
threaded concurrency

Concurrent primitive for
threaded concurrency
Threads

Threads

Thread model

Rust threads are os threads.

Léopold Clément Concurrent programming in Rust 2025-04-04 19 / 58

Threads

Thread model

Rust threads are os threads.

• If the main thread panics, the program stops.

Léopold Clément Concurrent programming in Rust 2025-04-04 19 / 58

Threads

Thread model

Rust threads are os threads.

• If the main thread panics, the program stops.
• If another thread panics, nothing happens.

Léopold Clément Concurrent programming in Rust 2025-04-04 19 / 58

Threads

Thread model

Rust threads are os threads.

• If the main thread panics, the program stops.
• If another thread panics, nothing happens.
• If the main thread terminates before the other, the other threads are stopped.

Léopold Clément Concurrent programming in Rust 2025-04-04 19 / 58

Threads

Kinds of functions in Rust

FnOnce Can be called once.

Léopold Clément Concurrent programming in Rust 2025-04-04 20 / 58

Threads

Kinds of functions in Rust

FnOnce Can be called once.
Fn Can be called multiples time.

Léopold Clément Concurrent programming in Rust 2025-04-04 20 / 58

Threads

Kinds of functions in Rust

FnOnce Can be called once.
Fn Can be called multiples time.
FnMut Can be called multiples time and mutate borrowed value.

Léopold Clément Concurrent programming in Rust 2025-04-04 20 / 58

Threads

Kinds of functions in Rust

FnOnce Can be called once.
Fn Can be called multiples time.
FnMut Can be called multiples time and mutate borrowed value.

let mut x = 0;
let add = |y| {x + y}; //Fn
let mut inc_by = |y| {x += y}; //FnMut

x: String = String::from("Léopold");
let concat_to_x = |y: String| add(x, &y); //FnOnce
 // x is consumed by add

Léopold Clément Concurrent programming in Rust 2025-04-04 20 / 58

Threads

Spawning and joining a thread

let t = std::thread::spawn(move || {
 println!("Hi from the thread");
});
println!("Hi from main");
t.join().unwrap();

Léopold Clément Concurrent programming in Rust 2025-04-04 21 / 58

Threads

Spawning and joining a thread

let t = std::thread::spawn(move || {
 println!("Hi from the thread");
});
println!("Hi from main");
t.join().unwrap();

Always join a thread.

Léopold Clément Concurrent programming in Rust 2025-04-04 21 / 58

Threads

Move value inside threads, wrong

let name = Arc::new("Leopold");
let hello_from_inside =|x:usize, name| {println!("Hi {} from {}", name,
x);};
let t1 = spawn(move || hello_from_inside(1, name));
let t2 = spawn(move || hello_from_inside(2, name));

error[E0382]: use of moved value: `name`

Léopold Clément Concurrent programming in Rust 2025-04-04 22 / 58

Threads

Move value inside threads, correct

Il faut cloner explicitement les Arc

 let name = Arc::new("Leopold");
 let hello_from_inside =|x:usize, name| {println!("Hi {} from {}",
name, x);};
 let tmp = name.clone(); // clone the Arc
 let t1 = spawn(move || hello_from_inside(1, tmp)); //tmp move, not
name
 let tmp = name.clone();
 let t2 = spawn(move || hello_from_inside(2, tmp));

Léopold Clément Concurrent programming in Rust 2025-04-04 23 / 58

Threads

Communication between threads

There are two kind of communication:

Léopold Clément Concurrent programming in Rust 2025-04-04 24 / 58

Threads

Communication between threads

There are two kind of communication:
• Shared state
‣ use mutex
‣ every threads can read/write

Léopold Clément Concurrent programming in Rust 2025-04-04 24 / 58

Threads

Communication between threads

There are two kind of communication:
• Shared state
‣ use mutex
‣ every threads can read/write

• Message passing
‣ use channel
‣ some threads are writer, some are reader

Léopold Clément Concurrent programming in Rust 2025-04-04 24 / 58

Concurrent primitive for
threaded concurrency
Mutex

Mutex

Usecase

A mutex allow to share a value between thread. Only one thread may access
the value at a time.

Léopold Clément Concurrent programming in Rust 2025-04-04 26 / 58

Mutex

Usecase

A mutex allow to share a value between thread. Only one thread may access
the value at a time. In Rust, Mutex is a wrapper around a non-atomic value.
Each thread has a reference to the Mutex, but only on at a time has a reference
to the value.

Léopold Clément Concurrent programming in Rust 2025-04-04 26 / 58

Mutex

Lifecycle of a Mutex

let mut threads : Vec<JoinHandle<_>> = Vec::new();
let counter = Arc::new(Mutex::new(0));
for idx_thread in 0..N_MAX{
 let counter = counter.clone();
 threads.push(spawn(move || {
 for _ in 0..idx_thread{
 let mut c = counter.lock().unwrap();
 *c += 1;}
 }));
 }
for t in threads.into_iter(){t.join().unwrap();}
assert_eq!(*counter.lock().unwrap(), (N_MAX-1)*(N_MAX)/2);

Léopold Clément Concurrent programming in Rust 2025-04-04 27 / 58

Mutex

Taking a Mutex

fn lock(&self) -> LockResult<MutexGuard<'_, T>>;
fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>>;

LockResult<T> = Result<T, PoisonError<T>>;
TryLockResult<T> = Result<T, TryLockError<T>>;

The mutex might be poisoned, and can’t be taken.

Léopold Clément Concurrent programming in Rust 2025-04-04 28 / 58

Mutex

Taking a Mutex

fn lock(&self) -> LockResult<MutexGuard<'_, T>>;
fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>>;

LockResult<T> = Result<T, PoisonError<T>>;
TryLockResult<T> = Result<T, TryLockError<T>>;

The mutex might be poisoned, and can’t be taken.

There are two interfaces :
• blocking : lock
• non-blocking : try_lock

Léopold Clément Concurrent programming in Rust 2025-04-04 28 / 58

Mutex

Releasing a Mutex

The mutex is released a the end of the context where it was locked.

You can also use std::mem::drop.

Léopold Clément Concurrent programming in Rust 2025-04-04 29 / 58

Mutex

Releasing a Mutex

The mutex is released a the end of the context where it was locked.

You can also use std::mem::drop.

for _ in 0..idx_thread{
 let mut c = counter.lock().unwrap();
 *c += 1;
 } // counter is released here

Léopold Clément Concurrent programming in Rust 2025-04-04 29 / 58

Mutex

Poisoned Mutex

If a thread panic while holding a mutex, the mutex will be poisoned. A poisoned
mutex can not be taken by anyone.

A mutex can be tested for poison with is_poisoned and cured with
clear_poison. This only affect the mutex, the inner data might still be corrupted.

Léopold Clément Concurrent programming in Rust 2025-04-04 30 / 58

Concurrent primitive for
threaded concurrency
Channel mpsc

Channel mpsc

Usecase

A Channel allow to pass messages between context.

The base implementation allow multiple writer and one reader. The channel has
an infinite capacity.

Léopold Clément Concurrent programming in Rust 2025-04-04 32 / 58

Channel mpsc

Creating a channel

A channel for value of type T is represented by its ends, the Sender<T> (tx) and
the Receiver<T> (rx).

let (tx, rx) = std::sync::mpsc::channel();

The Sender can be cloned, to create multiple producer.

Léopold Clément Concurrent programming in Rust 2025-04-04 33 / 58

Channel mpsc

Sending through the channel

fn send(&self, t: T) -> Result<(), SendError<T>>

Return an error only if the rx is dropped. Ok doen’t mean that the message is
received. This will never block.

Léopold Clément Concurrent programming in Rust 2025-04-04 34 / 58

Channel mpsc

Receiving through the channel

fn recv(&self) -> Result<T, RecvError>

Will block if no message in the channel. Will return an Err if the Sender is
disconnected.

Léopold Clément Concurrent programming in Rust 2025-04-04 35 / 58

Channel mpsc

Receiving through the channel

fn recv(&self) -> Result<T, RecvError>

Will block if no message in the channel. Will return an Err if the Sender is
disconnected.

There is a non-clocking interface, try_recv and a timout interface recv_timeout.

fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
fn try_recv(&self) -> Result<T, TryRecvError>

Léopold Clément Concurrent programming in Rust 2025-04-04 35 / 58

Channel mpsc

Receiving through the channel

fn recv(&self) -> Result<T, RecvError>

Will block if no message in the channel. Will return an Err if the Sender is
disconnected.

There is a non-clocking interface, try_recv and a timout interface recv_timeout.

fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
fn try_recv(&self) -> Result<T, TryRecvError>

The Receiver can also be turned into a iterator:

for msg in rx.iter() {
 ...
}

Léopold Clément Concurrent programming in Rust 2025-04-04 35 / 58

Async/await, Future and
cooperative concurrence

Async/await, Future and
cooperative concurrence
Getting two pages at the same
time

Getting two pages at the same time

Problem stattement

How to get the content of two web page ?
• as fast as possible
• without using too much ressources

Léopold Clément Concurrent programming in Rust 2025-04-04 38 / 58

Getting two pages at the same time

Sequential

Local machine Remote servers

User Server1 Server2
request page 1

processing

response page 1

request page 2

processing

response page 2

User Server1 Server2

Getting two webpage, Sequential

• simple
• slow
• use only one stack

Léopold Clément Concurrent programming in Rust 2025-04-04 39 / 58

Getting two pages at the same time

Threaded

Local machine Remote servers

User
Thread1 Thread2

Server1 Server2
Create thread

Create thread

request page 1

request page 2

processing

processing

response page 1

response page 2

Join

Join

User
Thread1 Thread2

Server1 Server2

Getting two webpage, Threaded

• use the os for context switching
• fast
• use three stacks

Léopold Clément Concurrent programming in Rust 2025-04-04 40 / 58

Getting two pages at the same time

Issue with threads

• Compute vs IO bound:
‣ here, we are IO-bound
‣ adding compute time through threads is not usefull

Léopold Clément Concurrent programming in Rust 2025-04-04 41 / 58

Getting two pages at the same time

Issue with threads

• Compute vs IO bound:
‣ here, we are IO-bound
‣ adding compute time through threads is not usefull

• Scaling to many tasks:
‣ one thread by tasks ⇒ one stack by task ⇒ heavy memory usage
‣ could we use only one the main thread and distribute compute time to

tasks ?

Léopold Clément Concurrent programming in Rust 2025-04-04 41 / 58

Getting two pages at the same time

Asynchronous tasks

Thread1 runing on Local machine Remote servers

User
Task 1 Task 2

Server1 Server2
Create future

request page 1

Create future

request page 2

processing

processing

response page 1

await

response page 2

await

User
Task 1 Task 2

Server1 Server2

Getting two webpage, async

• use a local algorithm for context
switching

• fast
• use one stack

Léopold Clément Concurrent programming in Rust 2025-04-04 42 / 58

Getting two pages at the same time

Task, future, executor

• tasks, and their sub-tasks:
‣ are represented as the promise of a future value (that value can be the unit

type if ther is no return value)
‣ can do a little progress at a time, stoping when they can not progress

anymore or are finised
• an algorithm, the executor:
‣ run on the main thread
‣ distribute compute time at each task

Léopold Clément Concurrent programming in Rust 2025-04-04 43 / 58

Async/await, Future and
cooperative concurrence
Implementation in Rust

Implementation in Rust

Futures

enum Poll<T> { // core::task::Poll
 Ready(T),
 Pending,
}
trait Future { // core::future::Future
 type Output;
 // Required method
 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)
 -> Poll<Self::Output>;
}

The context of a task is stored in the other member of the struct. poll must be
nonblocking.

Léopold Clément Concurrent programming in Rust 2025-04-04 45 / 58

Implementation in Rust

Resolving a future

• Resolving a future is polling it until it return Ready.
• Future implementation use a Waker to signal that the future is ready to be

polled.
‣ this allow for task to only wakeup when progress is possible.

• Unlike Javascript or C#, the task polling is done by the program, not by the
runtime/vitual machine.

Léopold Clément Concurrent programming in Rust 2025-04-04 46 / 58

Implementation in Rust

Implementing Future

• Future should be implemented as state machine,
• Future should not start their work before the first poll,
• Future should use the Waker to be called again,
• if a Future contain another Future, it should call the poll of the children each

time it is called,
• poll must be quick

Léopold Clément Concurrent programming in Rust 2025-04-04 47 / 58

Implementation in Rust

A delay future

struct Delay {when: Instant}
impl Future for Delay {
 type Output = &'static str;
 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)-> Poll<&'static str>
 { if Instant::now() >= self.when {
 println!("Hello world");
 Poll::Ready("done")
 } else {
 let waker = cx.waker().clone();// Get a handle to the waker
 let when = self.when;
 thread::spawn(move || { // Spawn a timer thread.
 let now = Instant::now();
 if now < when {thread::sleep(when - now);}
 waker.wake();
 });
 Poll::Pending
 }}}

Léopold Clément Concurrent programming in Rust 2025-04-04 48 / 58

Implementation in Rust

Async function

// fn slow_getter(&str) -> impl Future<i32>;
async fn slow_get_add(r: &str, n: i32) -> i32 {
 let r = get_slow(r).await;
 r + n
}

Léopold Clément Concurrent programming in Rust 2025-04-04 49 / 58

Implementation in Rust

Async function

// fn slow_getter(&str) -> impl Future<i32>;
async fn slow_get_add(r: &str, n: i32) -> i32 {
 let r = get_slow(r).await;
 r + n
}

async marks the function, the compiler will turn it into the function fn
slow_getter(&str, i32) -> impl Future<i32>. The associated structure
implementiong Future will also be generated. The .await marks that the future
should poll the get_slow future.

Léopold Clément Concurrent programming in Rust 2025-04-04 49 / 58

Implementation in Rust

Multiple Futures to await

async fn get_plus_twice_bad(r1: &str, r2: &str, n: i32) -> (i32, i32) {
 let p1 = slow_get_add(r1, n).await;
 let p2 = slow_get_add(r2, n).await;
 (p1, p2)
}
async fn get_plus_twice(r1: &str, r2: &str, n: i32) -> (i32, i32) {
 let pair = join(slow_get_add(r1, n), slow_get_add(r2, n));
 pair.await
}

Futures will only start to execute if there are awaited/polled.

Léopold Clément Concurrent programming in Rust 2025-04-04 50 / 58

Implementation in Rust

Executor

The executor is the object that handle polling the tasks.

Léopold Clément Concurrent programming in Rust 2025-04-04 51 / 58

Implementation in Rust

Executor

The executor is the object that handle polling the tasks.

There is no runtime/executor in std. The main ones are:
• Tokio for hosted environement
‣ include io async function for IO (network and filesystem)
‣ awaitable synchronisation primitive (mutex, channel)

• Embassy for embedded environement
‣ include async hardware abstraction layer

Léopold Clément Concurrent programming in Rust 2025-04-04 51 / 58

Implementation in Rust

Tokio, main task

#[tokio::main]
async fn main() -> Result<()> {
 let mut client = client::connect("127.0.0.1:6379").await?;

 client.set("hello", "world".into()).await?;

 let result = client.get("hello").await?;

 println!("got value from the server; result={:?}", result);

 Ok(())
}

Léopold Clément Concurrent programming in Rust 2025-04-04 52 / 58

Implementation in Rust

Tokio, creating tasks

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
 let listener = TcpListener::bind("127.0.0.1:8080").await?;
 loop {
 let (mut socket, _) = listener.accept().await?;
 let handle = tokio::spawn(async move {
 let mut buf = [0; 1024];
 loop {// In a loop, read data from the socket and write the data back.
 let n = match socket.read(&mut buf).await {
 Ok(0) => return, // socket closed
 Ok(n) => n,
 Err(e) => {
 eprintln!("failed to read from socket; err = {:?}", e);
 return;}};
 if let Err(e) = socket.write_all(&buf[0..n]).await {
 eprintln!("failed to write to socket; err = {:?}", e);
 return;
}}});}}

When spawned with spawn, tasks are eagerly executed.
Léopold Clément Concurrent programming in Rust 2025-04-04 53 / 58

Implementation in Rust

Good practice for async

• No blocking in async functions!

Léopold Clément Concurrent programming in Rust 2025-04-04 54 / 58

Implementation in Rust

Good practice for async

• No blocking in async functions!
• Do not hold a mutex across a await,

Léopold Clément Concurrent programming in Rust 2025-04-04 54 / 58

Implementation in Rust

Good practice for async

• No blocking in async functions!
• Do not hold a mutex across a await,
• use the join! macro to await multiple future at the same time.
• use the crate futures:
‣ the join futures to await multiple future at the same time,
‣ an awaitable Mutex

Léopold Clément Concurrent programming in Rust 2025-04-04 54 / 58

Conclusion

Threads vs Futures

• Threads
‣ Compute-bound program
‣ expensive to start
‣ can exploit multi-hart computer
‣ relies on the OS
‣ communication via channel or mutex
‣ can block

• Futures
‣ IO-bound program
‣ cheap to start
‣ might exploit multi-hart computer
‣ relies on a user provided executor

Léopold Clément Concurrent programming in Rust 2025-04-04 56 / 58

Threads vs Futures

‣ should not block

Léopold Clément Concurrent programming in Rust 2025-04-04 57 / 58

Using the best of both world

Léopold Clément Concurrent programming in Rust 2025-04-04 58 / 58

Using the best of both world

• multithreaded executor :
‣ use multiple thread to poll multiple future at the same time,
‣ it is default in tokio,

Léopold Clément Concurrent programming in Rust 2025-04-04 58 / 58

Using the best of both world

• multithreaded executor :
‣ use multiple thread to poll multiple future at the same time,
‣ it is default in tokio,

• using a thread to resolve long calculation
‣ the future create/acquire a thread, launch a calculation and return pending,
‣ when the thread terminate, it wake the future and give the result
‣ can also use a pool of thread

Léopold Clément Concurrent programming in Rust 2025-04-04 58 / 58

Questions ?

	Concurency in Rust
	Why use Rust
	Two types of concurrency
	Safty guarantiees in Rust
	The borrow checker
	Sharing value with Rc
	Sharing value with Rc, errors!
	The Send and Sync trait
	Sharing value with Arc
	Primitives
	Atomics
	Atomics : Ordering
	Atomics : Creating a mutex
	Interior Mutability
	Interior Mutability with Cell

	Concurrent primitive for threaded concurrency
	Threads
	Thread model
	Kinds of functions in Rust
	Spawning and joining a thread
	Move value inside threads, wrong
	Move value inside threads, correct
	Communication between threads

	Mutex
	Usecase
	Lifecycle of a Mutex
	Taking a Mutex
	Releasing a Mutex
	Poisoned Mutex

	Channel mpsc
	Usecase
	Creating a channel
	Sending through the channel
	Receiving through the channel

	Async/await, Future and cooperative concurrence
	Getting two pages at the same time
	Problem stattement
	Sequential
	Threaded
	Issue with threads
	Asynchronous tasks
	Task, future, executor

	Implementation in Rust
	Futures
	Resolving a future
	Implementing Future
	A delay future
	Async function
	Multiple Futures to await
	Executor
	Tokio, main task
	Tokio, creating tasks
	
	Good practice for async

	Conclusion
	Threads vs Futures
	Using the best of both world

