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Concurency in Rust



Why use Rust

For example, introducing parallelism in Rust is a relatively low-risk
operation: the compiler will catch the classical mistakes for you.

— The rust book, foreword

By leveraging ownership and type checking, many concurrency errors are
compile-time errors in Rust rather than runtime errors.

— The rust book, chapter 16
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Two types of concurrency
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Two types of concurrency

• Threaded concurrency
‣ Based on threads, like in C
‣ Good for compute-bound workloads,
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Two types of concurrency

• Threaded concurrency
‣ Based on threads, like in C
‣ Good for compute-bound workloads,

• Asynchronous concurrency
‣ Based on futures / promise / task / async functions
‣ Seen in Python, JavaScript/TypeScript
‣ Good for IO-bound workloads,
‣ Used in embassy (cf 4SE02)
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Concurency in Rust
Safty guarantiees in Rust



Safty guarantiees in Rust

The borrow checker

The borrow checker quarantees that there is either only one mutable reference
to a value, or multiple inmutable.
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Safty guarantiees in Rust

Sharing value with Rc

Rc is a smart pointer.

It can be cloned, and count the number of time was cloned.

It allow for an value to have a lifetime long enough for all the time it is used.

fn rc_to_thread() {
    let a = Rc::from(1);
    let b = a.clone();
    let j = spawn(move || println!("val = {}", *b));
    j.join();
}
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Safty guarantiees in Rust

Sharing value with Rc, errors!

error[E0277]: `Rc<i32>` cannot be sent between threads safely
   --> src/main.rs:90:19
    |
90  |     let j = spawn(move || println!("val = {}", *b));
    |             ----- -------^^^^^^^^^^^^^^^^^^^^^^^^^
    |             |     |
    |             |     `Rc<i32>` cannot be sent between threads safely
    |             |     within this `{closure@src/main.rs:90:19: 90:26}`
    |             required by a bound introduced by this call
    |
    = help: within `{closure@src/main.rs:90:19: 90:26}`, the trait `Send`
is not implemented for `Rc<i32>`
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Safty guarantiees in Rust

The Send and Sync trait

The compiler implements those trait when possible :
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Safty guarantiees in Rust

The Send and Sync trait

The compiler implements those trait when possible :

Send The value can be moved between threads.
Sync Reference to the value can be moved between threads.
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Safty guarantiees in Rust

Sharing value with Arc

To share the ownership of a value of type T across threads boundaries, you
might use Arc<T> instead of Rc<T>.
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Safty guarantiees in Rust

Sharing value with Arc

To share the ownership of a value of type T across threads boundaries, you
might use Arc<T> instead of Rc<T>.

Here the counter is atomic, so the compiler add the Send trait and the Arc can
be moved between threads.
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Safty guarantiees in Rust

Sharing value with Arc

To share the ownership of a value of type T across threads boundaries, you
might use Arc<T> instead of Rc<T>.

Here the counter is atomic, so the compiler add the Send trait and the Arc can
be moved between threads.

Shared ownership does not permit mutability, Arc can only be deref into
inmutable reference.
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Safty guarantiees in Rust

Primitives

Most of the primitives are defined in the std module.
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Safty guarantiees in Rust

Primitives

Most of the primitives are defined in the std module.

• std
‣ atomics
‣ thread
‣ sync

– mutex
– channel

‣ future
‣ task
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Safty guarantiees in Rust

Primitives

Most of the primitives are defined in the std module.

• std
‣ atomics
‣ thread
‣ sync

– mutex
– channel

‣ future
‣ task

You can build more complex primitives from basic primitives, or using unsafe
block.
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Safty guarantiees in Rust

Atomics

Atomics lives in std::sync::atomics.

  use std::sync::atomic::{AtomicU16, Ordering};

  let atomic = AtomicU16::new(0);
  assert_eq!(atomic.load(Ordering::Relaxed), 0);
  atomic.store(1, Ordering::Relaxed);
  assert_eq!(atomic.fetch_add(10, Ordering::Relaxed), 1);
  assert_eq!(atomic.swap(100, Ordering::Relaxed), 11);
  assert_eq!(atomic.load(Ordering::Relaxed), 100);
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Safty guarantiees in Rust

Atomics

Atomics lives in std::sync::atomics.

  use std::sync::atomic::{AtomicU16, Ordering};

  let atomic = AtomicU16::new(0);
  assert_eq!(atomic.load(Ordering::Relaxed), 0);
  atomic.store(1, Ordering::Relaxed);
  assert_eq!(atomic.fetch_add(10, Ordering::Relaxed), 1);
  assert_eq!(atomic.swap(100, Ordering::Relaxed), 11);
  assert_eq!(atomic.load(Ordering::Relaxed), 100);

The ordering is the same as in C++ 20
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Safty guarantiees in Rust

Atomics : Ordering

Relaxed: only guarantee atomicity and modification order consistency,
AcqRel: also, things that append before/after a store in one threads append
before/after a read in another thread,
SeqCst: also, there is a single total modification order of all atomic operations
that are so tagged
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Safty guarantiees in Rust

Atomics : Creating a mutex

pub struct SpinLockMutex{
    locked : AtomicBool,
}
impl SpinLockMutex {
    pub fn new() -> Self{
        SpinLockMutex { locked: AtomicBool::new(false) }
    }
    pub fn lock(&self) -> (){
        loop {
            let old_state = AtomicBool::swap(&self.locked, true, Ordering::AcqRel);
            if !old_state {return;}
        }
    }
    pub fn unlock(&self) -> (){
        AtomicBool::store(&self.locked, false, Ordering::AcqRel);
    }
}

Léopold Clément Concurrent programming in Rust 2025-04-04 14 / 58



Safty guarantiees in Rust

Interior Mutability

let atomic = AtomicU16::new(0);

pub fn swap(&self, val: bool, order: Ordering) -> bool
pub fn lock(&self) -> ()
pub fn unlock(&self) -> ()
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Safty guarantiees in Rust

Interior Mutability

let atomic = AtomicU16::new(0);

pub fn swap(&self, val: bool, order: Ordering) -> bool
pub fn lock(&self) -> ()
pub fn unlock(&self) -> ()

In Rust, some type allows its value to be mutated even on not mutable
instances.
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Safty guarantiees in Rust

Interior Mutability with Cell

Cell<T> is a container used to create interior mutability.

pub fn set(&self, val: T)
pub fn replace(&self, val: T) -> T
pub fn swap(&self, other: &Cell<T>)

Cell is not Send : it is not atomic from other threads, only from its own thread.
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Concurrent primitive for
threaded concurrency
Threads



Threads

Thread model

Rust threads are os threads.
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Threads

Thread model

Rust threads are os threads.

• If the main thread panics, the program stops.
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Threads

Thread model

Rust threads are os threads.

• If the main thread panics, the program stops.
• If another thread panics, nothing happens.
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Threads

Thread model

Rust threads are os threads.

• If the main thread panics, the program stops.
• If another thread panics, nothing happens.
• If the main thread terminates before the other, the other threads are stopped.
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Threads

Kinds of functions in Rust

FnOnce Can be called once.
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FnMut Can be called multiples time and mutate borrowed value.

Léopold Clément Concurrent programming in Rust 2025-04-04 20 / 58



Threads

Kinds of functions in Rust

FnOnce Can be called once.
Fn Can be called multiples time.
FnMut Can be called multiples time and mutate borrowed value.

let mut x = 0;
let add = |y| {x + y}; //Fn
let mut inc_by = |y| {x += y}; //FnMut

x: String = String::from("Léopold");
let concat_to_x = |y: String| add(x, &y); //FnOnce
                                          // x is consumed by add
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Threads

Spawning and joining a thread

let t = std::thread::spawn(move || {
    println!("Hi from the thread");
});
println!("Hi from main");
t.join().unwrap();
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Threads

Spawning and joining a thread

let t = std::thread::spawn(move || {
    println!("Hi from the thread");
});
println!("Hi from main");
t.join().unwrap();

Always join a thread.
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Threads

Move value inside threads, wrong

let name = Arc::new("Leopold");
let hello_from_inside =|x:usize, name| {println!("Hi {} from {}", name,
x);};
let t1 = spawn(move || hello_from_inside(1, name));
let t2 = spawn(move || hello_from_inside(2, name));

error[E0382]: use of moved value: `name`
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Threads

Move value inside threads, correct

Il faut cloner explicitement les Arc

    let name = Arc::new("Leopold");
    let hello_from_inside =|x:usize, name| {println!("Hi {} from {}",
name, x);};
    let tmp = name.clone(); // clone the Arc
    let t1 = spawn(move || hello_from_inside(1, tmp)); //tmp move, not
name
    let tmp = name.clone();
    let t2 = spawn(move || hello_from_inside(2, tmp));
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Threads

Communication between threads

There are two kind of communication:
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Threads

Communication between threads

There are two kind of communication:
• Shared state
‣ use mutex
‣ every threads can read/write
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Threads

Communication between threads

There are two kind of communication:
• Shared state
‣ use mutex
‣ every threads can read/write

• Message passing
‣ use channel
‣ some threads are writer, some are reader
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Concurrent primitive for
threaded concurrency
Mutex



Mutex

Usecase

A mutex allow to share a value between thread. Only one thread may access
the value at a time. 
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Mutex

Usecase

A mutex allow to share a value between thread. Only one thread may access
the value at a time. In Rust, Mutex is a wrapper around a non-atomic value.
Each thread has a reference to the Mutex, but only on at a time has a reference
to the value.
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Mutex

Lifecycle of a Mutex

let mut threads : Vec<JoinHandle<_>> = Vec::new();
let counter = Arc::new(Mutex::new(0));
for idx_thread in 0..N_MAX{
    let counter = counter.clone();
    threads.push(spawn(move || {
        for _ in 0..idx_thread{
            let mut c = counter.lock().unwrap();
            *c += 1;}
      }));
    }
for t in threads.into_iter(){t.join().unwrap();}
assert_eq!(*counter.lock().unwrap(), (N_MAX-1)*(N_MAX)/2);
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Mutex

Taking a Mutex

fn lock(&self) -> LockResult<MutexGuard<'_, T>>;
fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>>;

LockResult<T> = Result<T, PoisonError<T>>;
TryLockResult<T> = Result<T, TryLockError<T>>;

The mutex might be poisoned, and can’t be taken.
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Mutex

Taking a Mutex

fn lock(&self) -> LockResult<MutexGuard<'_, T>>;
fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>>;

LockResult<T> = Result<T, PoisonError<T>>;
TryLockResult<T> = Result<T, TryLockError<T>>;

The mutex might be poisoned, and can’t be taken.

There are two interfaces :
• blocking : lock
• non-blocking : try_lock
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Mutex

Releasing a Mutex

The mutex is released a the end of the context where it was locked.

You can also use std::mem::drop.

Léopold Clément Concurrent programming in Rust 2025-04-04 29 / 58



Mutex

Releasing a Mutex

The mutex is released a the end of the context where it was locked.

You can also use std::mem::drop.

for _ in 0..idx_thread{
  let mut c = counter.lock().unwrap();
  *c += 1;
  } // counter is released here
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Mutex

Poisoned Mutex

If a thread panic while holding a mutex, the mutex will be poisoned. A poisoned
mutex can not be taken by anyone.

A mutex can be tested for poison with is_poisoned and cured with
clear_poison. This only affect the mutex, the inner data might still be corrupted.

Léopold Clément Concurrent programming in Rust 2025-04-04 30 / 58



Concurrent primitive for
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Channel mpsc

Usecase

A Channel allow to pass messages between context.

The base implementation allow multiple writer and one reader. The channel has
an infinite capacity.
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Channel mpsc

Creating a channel

A channel for value of type T is represented by its ends, the Sender<T> (tx) and
the Receiver<T> (rx).

let (tx, rx) = std::sync::mpsc::channel();

The Sender can be cloned, to create multiple producer.
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Channel mpsc

Sending through the channel

fn send(&self, t: T) -> Result<(), SendError<T>>

Return an error only if the rx is dropped. Ok doen’t mean that the message is
received. This will never block.
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Channel mpsc

Receiving through the channel

fn recv(&self) -> Result<T, RecvError>

Will block if no message in the channel. Will return an Err if the Sender is
disconnected.
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Channel mpsc

Receiving through the channel

fn recv(&self) -> Result<T, RecvError>

Will block if no message in the channel. Will return an Err if the Sender is
disconnected.

There is a non-clocking interface, try_recv and a timout interface recv_timeout.

fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
fn try_recv(&self) -> Result<T, TryRecvError>
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Channel mpsc

Receiving through the channel

fn recv(&self) -> Result<T, RecvError>

Will block if no message in the channel. Will return an Err if the Sender is
disconnected.

There is a non-clocking interface, try_recv and a timout interface recv_timeout.

fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
fn try_recv(&self) -> Result<T, TryRecvError>

The Receiver can also be turned into a iterator:

for msg in rx.iter() {
  ...
}
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Async/await, Future and
cooperative concurrence
Getting two pages at the same
time



Getting two pages at the same time

Problem stattement

How to get the content of two web page ?
• as fast as possible
• without using too much ressources
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Getting two pages at the same time

Sequential

Local machine Remote servers

User Server1 Server2
request page 1

processing

response page 1

request page 2

processing

response page 2

User Server1 Server2

Getting two webpage, Sequential

• simple
• slow
• use only one stack
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Getting two pages at the same time

Threaded

Local machine Remote servers

User
Thread1 Thread2

Server1 Server2
Create thread

Create thread

request page 1

request page 2

processing

processing

response page 1

response page 2

Join

Join

User
Thread1 Thread2

Server1 Server2

Getting two webpage, Threaded

• use the os for context switching
• fast
• use three stacks
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Getting two pages at the same time

Issue with threads

• Compute vs IO bound:
‣ here, we are IO-bound
‣ adding compute time through threads is not usefull
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Getting two pages at the same time

Issue with threads

• Compute vs IO bound:
‣ here, we are IO-bound
‣ adding compute time through threads is not usefull

• Scaling to many tasks:
‣ one thread by tasks ⇒ one stack by task ⇒ heavy memory usage
‣ could we use only one the main thread and distribute compute time to

tasks ?
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Getting two pages at the same time

Asynchronous tasks

Thread1 runing on Local machine Remote servers

User
Task 1 Task 2

Server1 Server2
Create future

request page 1

Create future

request page 2

processing

processing

response page 1

await

response page 2

await

User
Task 1 Task 2

Server1 Server2

Getting two webpage, async

• use a local algorithm for context
switching

• fast
• use one stack
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Getting two pages at the same time

Task, future, executor

• tasks, and their sub-tasks:
‣ are represented as the promise of a future value (that value can be the unit

type if ther is no return value)
‣ can do a little progress at a time, stoping when they can not progress

anymore or are finised
• an algorithm, the executor:
‣ run on the main thread
‣ distribute compute time at each task
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Implementation in Rust



Implementation in Rust

Futures

enum Poll<T> { // core::task::Poll
  Ready(T),
  Pending,
}
trait Future { // core::future::Future
  type Output;
  // Required method
  fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) 
    -> Poll<Self::Output>;
}

The context of a task is stored in the other member of the struct. poll must be
nonblocking.
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Implementation in Rust

Resolving a future

• Resolving a future is polling it until it return Ready.
• Future implementation use a Waker to signal that the future is ready to be

polled.
‣ this allow for task to only wakeup when progress is possible.

• Unlike Javascript or C#, the task polling is done by the program, not by the
runtime/vitual machine.
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Implementation in Rust

Implementing Future

• Future should be implemented as state machine,
• Future should not start their work before the first poll,
• Future should use the Waker to be called again,
• if a Future contain another Future, it should call the poll of the children each

time it is called,
• poll must be quick
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Implementation in Rust

A delay future

struct Delay {when: Instant}
impl Future for Delay {
    type Output = &'static str;
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>)-> Poll<&'static str>
    {   if Instant::now() >= self.when {
            println!("Hello world");
            Poll::Ready("done")
        } else {
            let waker = cx.waker().clone();// Get a handle to the waker
            let when = self.when;
            thread::spawn(move || { // Spawn a timer thread.
                let now = Instant::now();
                if now < when {thread::sleep(when - now);}
                waker.wake();
            });
            Poll::Pending
      }}}
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Implementation in Rust

Async function

// fn slow_getter(&str) -> impl Future<i32>;
async fn slow_get_add(r: &str, n: i32) -> i32 {
  let r = get_slow(r).await;
  r + n
}
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Implementation in Rust

Async function

// fn slow_getter(&str) -> impl Future<i32>;
async fn slow_get_add(r: &str, n: i32) -> i32 {
  let r = get_slow(r).await;
  r + n
}

async marks the function, the compiler will turn it into the function fn
slow_getter(&str, i32) -> impl Future<i32>. The associated structure
implementiong Future will also be generated. The .await marks that the future
should poll the get_slow future.
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Implementation in Rust

Multiple Futures to await

async fn get_plus_twice_bad(r1: &str, r2: &str, n: i32) -> (i32, i32) {
  let p1 = slow_get_add(r1, n).await;
  let p2 = slow_get_add(r2, n).await;
  (p1, p2)
}
async fn get_plus_twice(r1: &str, r2: &str, n: i32) -> (i32, i32) {
  let pair = join(slow_get_add(r1, n), slow_get_add(r2, n));
  pair.await
}

Futures will only start to execute if there are awaited/polled.
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Implementation in Rust

Executor

The executor is the object that handle polling the tasks.
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Implementation in Rust

Executor

The executor is the object that handle polling the tasks.

There is no runtime/executor in std. The main ones are:
• Tokio for hosted environement
‣ include io async function for IO (network and filesystem)
‣ awaitable synchronisation primitive (mutex, channel)

• Embassy for embedded environement
‣ include async hardware abstraction layer
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Implementation in Rust

Tokio, main task

#[tokio::main]
async fn main() -> Result<()> {
    let mut client = client::connect("127.0.0.1:6379").await?;

    client.set("hello", "world".into()).await?;

    let result = client.get("hello").await?;

    println!("got value from the server; result={:?}", result);

    Ok(())
}
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Implementation in Rust

Tokio, creating tasks

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let listener = TcpListener::bind("127.0.0.1:8080").await?;
    loop {
        let (mut socket, _) = listener.accept().await?;
        let handle = tokio::spawn(async move {
            let mut buf = [0; 1024];
            loop {// In a loop, read data from the socket and write the data back.
                let n = match socket.read(&mut buf).await {
                    Ok(0) => return, // socket closed
                    Ok(n) => n,
                    Err(e) => {
                        eprintln!("failed to read from socket; err = {:?}", e);
                        return;}};
                if let Err(e) = socket.write_all(&buf[0..n]).await {
                    eprintln!("failed to write to socket; err = {:?}", e);
                    return;
}}});}}

When spawned with spawn, tasks are eagerly executed.
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Implementation in Rust

Good practice for async

• No blocking in async functions!
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Implementation in Rust

Good practice for async

• No blocking in async functions!
• Do not hold a mutex across a await,
• use the join! macro to await multiple future at the same time.
• use the crate futures:
‣ the join futures to await multiple future at the same time,
‣ an awaitable Mutex
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Conclusion



Threads vs Futures

• Threads
‣ Compute-bound program
‣ expensive to start
‣ can exploit multi-hart computer
‣ relies on the OS
‣ communication via channel or mutex
‣ can block

• Futures
‣ IO-bound program
‣ cheap to start
‣ might exploit multi-hart computer
‣ relies on a user provided executor
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Threads vs Futures

‣ should not block
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Using the best of both world
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Using the best of both world

• multithreaded executor :
‣ use multiple thread to poll multiple future at the same time,
‣ it is default in tokio,
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Using the best of both world

• multithreaded executor :
‣ use multiple thread to poll multiple future at the same time,
‣ it is default in tokio,

• using a thread to resolve long calculation
‣ the future create/acquire a thread, launch a calculation and return pending,
‣ when the thread terminate, it wake the future and give the result
‣ can also use a pool of thread
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Questions ?
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