
Concurrency Programming

Laurent Pautet
Laurent.Pautet@enst.fr

Version EN, 2.0
se205.wp.imt.fr

mailto:Laurent.Pautet@enst.fr
mailto:Laurent.Pautet@enst.fr

L. Pautet

Plan

■ Lightweight processes
■ POSIX Library
■ Java Language
■ Design Patterns

Pautet et al

Lightweight Processes  
Motivations and approaches

■ An activity often consists of a sequence of actions:
■ Receipt of data (values, events, etc)
■ Processing of data received (computation / conversion, etc.)
■ Emission of output data (values, events, etc.)

■ All activity consumes shared resources like CPU or data
■ Two approaches to performing these activities

■ Serialized processing: statically interleaving the activities
■ Everything must be planned to serialize the execution sequence

■ Concurrent processing: temporal sharing of resources (CPU)
■ It is necessary to be able to suspend and resume an activity

3

Pautet et al

Lightweight Processes  
Benefits and Drawbacks

■ Cost of sequential programming
■ Very deterministic because we know which task is being executed at a

given time
■ Not very adaptive: plan the sequences in advance
■ Poor performance: a blocked task blocks ready tasks

■ Cost of concurrency programming
■ Possibly preemptive scheduling to determine and execute the ready

activities
■ Concurrent systems programming:

■ Coordinate activities sharing their resources
■ Distributed systems programming:

■ Coordinate activities without sharing resources

4

L. Pautet

Lightweight Processes  
Characteristics of heavyweight processes

■ Classic heavyweight Unix processes
■ Copy or clone of the parent process
■ No memory sharing
■ Expensive data sharing through I/O

■ Basic functionality
■ fork, exec, exit, wait
■ Costly synchronization by I/O

■ No light OS implementation possible
■ Memory protected between processes by MMU
■ Costly change of context (cache, MMU, etc.)

fork() wait()

exec() exit()

L. Pautet

Lightweight Processes  
Characteristics of lightweight processes

■ Lightweight processes (threads) :
■ Share a common memory
■ Have enriched features such as synchronization tools
■ May result in a light implementation

■ Lightweight processes do not obsolete classic
heavyweight processes that provide
■ Spatial isolation (address spaces)
■ Time isolation (hierarchical schedulers)

L. Pautet

Lightweight Processes  
Architecture

■ A program is made up of global variables and functions
in particular the main function

■ A heavy process starts with an initial lightweight process
which executes the main function

■ The heavy process (or its initial light process) can create
other light processes whose main function signature is
similar to the main function one

■ The initial process and those created later run in parallel
and share resources (including global variables) within
the heavy process

L. Pautet

Lightweight Processes  
Composition of a lightweight process

■ A light process
■ Executes a main function (signature close to main)
■ Has a private stack for its local data,
■ Shares the overall data of the heavy process

■ Context switch between two light processes
created by the same heavy process is faster than
between two heavy processes:
■ The second case requires more updates in the

memory hierarchy (caches, pages, ...)

L. Pautet

Lightweight Processes  
Software Design

■ Benefits for system programming:
■ Easy memory sharing
■ Rapid context change
■ Rich interface compared to the heavy process one

■ Benefits for software engineering:
■ Easier design into parallel activities
■ Facilitated interactions between parallel activities
■ Integration into the programming language (Java)as a

first class citizen

L. Pautet

Plan

■ Lightweight processes
■ POSIX Library
■ Java Language
■ Design Patterns

L. Pautet

POSIX 
Lightweight Processes (Thread)

■ A thread is defined at the system level by
■ An identifier (tid)

■ It has as system resources
■ A priority
■ A copy of its registers
■ A stack
■ A signal mask
■ Private data (keys)

■ These resources are only visible within the thread which
encompasses it

L. Pautet

POSIX 
Thread

pthread_create (…) Creates a thread. By default, all threads  
have the same priority. One can change its
priority. The start time (activation)
depends on its priority .

pthread_exit (…) Completes the thread only (not the
process). Different from exit that ends the
process and its threads.

pthread_self (…) Returns the identifier of the current thread
execution

pthread_join (…) Waits for the completion of a thread which is
given the identifier as parameter

L. Pautet

POSIX 
Thread activation

■ Threads are created with a default priority (parent’s one)
■ This priority can be modified at creation or later on

■ Above, t0 continues to execute after creation of t1 ...
Unless the priority of t1 is greater than that of t0!
■ With equal priority, t1 can also run as soon as it is created, if the

scheduling of the processes is done by quantum
■ The control of the activation of a thread must be done by

synchronization mechanisms (not by priority)

int main (void) {
 pthread_t t0, t1, t2;
 t0 = pthread_self(); /* thread t0 */
 pthread_create (&t1, NULL, f, NULL); /* thread t1 */
 pthread_create (&t2, NULL, g, NULL); /* thread t2 */
}

L. Pautet

POSIX 
Arguments of the thread main function

■ When calling pthread_create, one can provide a pointer
to the parameters passed to the main thread function

■ It is safer to have the parameters specific to the thread.
Do not share them between threads.

void f (void * arg) {
 int id = (int) *arg;
 printf(«id = %d\n », id);
}

int main (void) {
 pthread_t t[2];
 int id;
 int * arg;
for (id = 0; id < 2; id++){
 arg = malloc(sizeof(int));
 *arg = id;
 pthread_create(&t[id], NULL, f, arg);
 }
}

L. Pautet

POSIX 
Using threads

■ The user defines the logical parallelism of the application
in terms of independent main functions

■ The system assigns threads to processors in applying a
scheduling policy

■ The user is responsible for managing concurrent access
to resources (mutual exclusion, signal operations, etc)

L. Pautet

POSIX 
Synchronisation problem

■ Below, the final value of V can be different from 20000 !
■ The operation v++ (or v = v+1) is not atomic and can

be broken down as :
■ Load v in a register
■ Increment register
■ Store the register in v

int v = 0;
void f (void) {
 int i;
 pthread_t t;
 t = pthread_self();
 for (i=0; i<10000; i++) v++;
 printf(«%d: v = %d\n », t, v);
}

int main (void) {
 pthread_t t1, t2;
 pthread_create(&t1, NULL, f, NULL);
 pthread_create(&t2, NULL, f, NULL);
 pthread_join (t1, …);
 pthread_join (t2, …);
 printf («v = %d\n », v);
 return 0;
}

L. Pautet

POSIX 
Synchronization tools

■ The synchronization mechanisms are many for
lightweight POSIX processes
■ The lock (or mutex) offers mutual exclusion

mechanisms. A critical section must be released
as soon as possible

■ The conditional variable offers queuing mechanisms
■ The semaphore offers the historical P and V

mechanisms of heavy processes. Can be built using a
lock and a conditional variable.

L. Pautet

POSIX 
Mutex or Lock

pthread_mutex_init Create a mutex in an unlocked state

pthread_mutex_destroy Destroy mutex

pthread_mutex_lock Take lock if it is free, block the thread
otherwise. The duration of a critical
section must be short.

pthread_mutex_trylock Take lock if free otherwise returns an error
without blocking the thread. The duration
of a critical section must be short.

pthread_mutex_timedlock Take lock if free otherwise wait for an
absolute delay (date). The duration of a
critical section must be short.

pthread_mutex_unlock Release the lock. Must be usually released by
the thread that took it

L. Pautet

POSIX 
Synchronisation with a mutex

int v = 0;
pthread_mutex_t m;
void f(void){
 int i;
 pthread_t t;
 t = pthread_self();
 for (i=0; i<10000; i++){
 pthread_mutex_lock(&m);
 v = v + 1;
 pthread_mutex_unlock(&m);
 }
 printf(«%d: v = %d\n », t, v);
}

void main (void){
 pthread_t t1, t2;
 pthread_mutex_init(&m, …);
 pthread_create(&t1, …, f, …);
 pthread_create(&t2, …, f, …);
 pthread_join(t1, …);
 pthread_join(t2, …);
 printf (« v = %d\n », v);
 }

L. Pautet

…
pthread_mutex_init (&m);
pthread_create (f1, …);
pthread_create (f2, …);
…
void f1(){
 pthread_mutex_lock(&m);
}
void f2(){
 pthread_mutex_unlock(&m);
}

…
pthread_mutex_init (&m);
pthread_create (f, …);
…
void f (){
 pthread_mutex_lock (&m);
 …
 pthread_mutex_unlock (&m);
}

POSIX 
Good programming practices with mutexes

■ The time spent in a mutex must be short
■ No need for trylock or timedlock in practice

■ Only the thread that took the lock can release it
■ Can be configured. This differs from semaphores.

NON OUI

L. Pautet

POSIX 
Difference trylock & timedlock(0 us)

■ trylock () tries to take the lock and otherwise
continues executing

■ timelock () tries to take the lock and otherwise
waits an absolute timeout possibly 0 us ... but it
waits for whatever happens.

■ It stays into the blocked state to possibly resume
execution if no other thread of the same priority
is ready

L. Pautet

POSIX 
Conditional Variable (CondVar)

pthread_cond_init(&cv,…) Create a conditional variable.
pthread_cond_destroy Destroy a conditional variable.
pthread_cond_signal(&cv) Release a thread blocked on a conditional

variable. Possibly none.
pthread_cond_broadcast(&cv) Release all threads blocked on a

conditional variable. Possibly none.
pthread_cond_wait(&cv, &m) Block (always) the thread by releasing

mutex m, unblocking thread on signal or
broadcast and at last taking m back.

pthread_cond_timedwait Proceed as pthread_cond_wait but
wait only for an absolute delay (date).

L. Pautet

void wait_for_x_equal(int y){
 while (true) {
 pthread_mutex_lock(&m);
 if (x == y) break;
 pthread_mutex_unlock(&m);
 sleep (t);
 }
 pthread_mutex_unlock(&m);
}

int x;
pthread_mutex_t m;
void set_x(int y) {
 pthread_mutex_lock(&m);
 x = y;
 pthread_mutex_unlock(&m);
}

POSIX 
Exercise : waiting on guard (1/2)

■ We want to block a thread as long as a variable is not
equal to a given value (passed as a parameter)

■ The code below uses polling and may miss updates.
Why ?

L. Pautet

void wait_for_x_equal(int y) {
 pthread_mutex_lock (&m);
 while (x != y)  

 pthread_cond_wait(&v, &m);
 pthread_mutex_unlock(&m);
}

int x;
mutex_t m;
pthread_cond_t v;
void set_x (int y){
 pthread_mutex_lock(&m);
 x = y;
 pthread_cond_broadcast(&v);
 pthread_mutex_unlock(&m);
}

POSIX 
Waiting on guard (2/2)

■ The solution below fixes both problems
■ The use of both a VarCond and its mutex allows to

suspend the thread without "releasing" mutual exclusion
(classic problem)

L. Pautet

POSIX 
Interaction entre Mutex et VarCond

■ wait binds a conditional variable cv to a mutex m
■ The access to the conditional variable cv is protected

thanks to a lock m
■ A call to wait releases the mutex m and sets the thread

in blocked state in the cv queue
■ During a signal or broadcast call, the thread in the cv’s

queue is moved to m's queue in order for the thread to
get lock m back

■ Later it will return the lock m using unlock

unlock() lock()blocked readysignal

L. Pautet

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

C

M

Queues Status
(locked)

L. Pautet

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

C

M

Queues Status
(locked)

t2

L. Pautet

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

t2 C

M

Queues Status
(locked)

t2

L. Pautet

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

t2 C

M

Queues Status
(locked)

L. Pautet

t3

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

t2 C

M

Queues Status
(locked)

L. Pautet

t3

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

t2 C

M

Queues Status
(locked)

L. Pautet

t3

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

t2 C

Mt1

Queues Status
(locked)

L. Pautet

t3

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

t2 C

Mt1

Queues Status
(locked)

L. Pautet

t3

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

t2 C

Mt1

Queues Status
(locked)

L. Pautet

t3

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

C

Mt1t2

Queues Status
(locked)

L. Pautet

t3

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

C

Mt1t2

Queues Status
(locked)

L. Pautet

t1

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

C

Mt2

Queues Status
(locked)

L. Pautet

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

C

M

Queues Status
(locked)

L. Pautet

POSIX 
Exercise : states and queues

 void *main_t1(void * arg){
 05 sleep (2);
 06 pthread_mutex_lock (&m);
 11 pthread_mutex_unlock (&m);
 }

void *main_t2(void *arg){
 01 pthread_mutex_lock (&m);
 02 pthread_cond_wait(&c,&m);
 09 pthread_mutex_unlock (&m);
}
void *main_t3(void * arg){
 03 sleep(1);
 04 pthread_mutex_lock (&m);
 07 sleep (2);
 08 pthread_cond_signal (&c);
 09 sleep (1);
 10 pthread_mutex_unlock (&m);
}

C

M

Queues Status
(locked)

L. Pautet

POSIX 
Timed Conditional Variable

■ The return code of pthread_cond_timedwait
determines the reason for its release.
■ If the code is 0, the function has been released

normally
■ If the code is ETIMEDOUT, the time has expired

■ It is important to check the return code of
pthread_cond_timedwait and any POSIX function
in general

L. Pautet

POSIX 
Time Management

■ Two (absolute) time structures
■ timeval in seconds and microseconds for gettimeofday
■ timespec in seconds and nano-seconds for pthread_cond_wait

■ It is therefore necessary to convert them
■ timeval in seconds and microseconds for gettimeofday
■ timespec in seconds and nano-seconds for pthread_cond_wait

 mutex_lock(&m);
 while (x != y){  

 rc = cond_timedwait(&v,&m,&ts);
 if (rc == ETIMEDOUT) break;
 }
 mutex_unlock(&m);

int rc;
struct timespec ts;
struct timeval tv;
gettimeofday(&tv, NULL);
ts.tv_sec = tv.tv_sec + delay;
ts.tv_nsec = tv.tv_usec*1000;

L. Pautet

POSIX 
Sémaphore

sem_open Creates a named semaphore and initializes its
counter (function also valid for heavy processes)

sem_init Creates an anonymous semaphore and initializes its
counter (possibly deprecated function)

sem_destroy Destroy a semaphore

sem_wait Wait for the counter to be positive and decrease it

sem_trywait Decrements the counter if positive otherwise
returns a fault

sem_timedwait Wait for the counter to be positive while waiting
(always) at most for an absolute period and the
decrease, otherwise return an error

sem_post Increments the counter and possibly unblocks a
thread

L. Pautet

sem_t fullSlots, mutex;
sem_t emptySlots;
int first, size = 0;
int last = MAX – 1;
char b[MAX];
mutex=sem_open(«m»,…,1);
fullSlots=  

sem_open(«fs», …, 0);
emptySlots=  

sem_open(«es», …,M);

void put(char c){
 sem_wait(&emptySlots);
 sem_wait(&mutex);
 last=(last+1)%MAX;
 b[last]=c; size++;
 sem_post(&mutex);
 sem_post(&fullSlots);
}

POSIX  
Circular blocking buffer

char get (void){
 char c;
 sem_wait(&fullSlots);
 sem_wait(&mutex);
 c=b[first]; size--;
 first=(first+1)%MAX;
 sem_post(&mutex);
 sem_post(&emptySlots);
 return c;
}

■ We have a circular buffer
■ We block when we get from an empty buffer
■ We block when we put in a full buffer
■ Two semaphores to block, third one for mutual exclusion

L. Pautet

POSIX 
Summary

■ A thread provides a parallel sequence of execution
sharing a address space with other threads

■ A mutex serializes access to data for a short time
■ A conditional variable blocks a thread within mutual

exclusion without introducing deadlocks
■ A semaphore tries to take a resource and blocks in case

of unavailability
■ POSIX leaves certain semantic variabilities which

sometimes make applications non-portable
■ You MUST check the correct behavior of the

functions by return code! This is C programming !

L. Pautet

Plan

■ Lightweight processes
■ POSIX Library
■ Java Language
■ Design Patterns

L. Pautet

class MyThread extends Thread {
 public void run(){System.out.println("Execute"+ getName());}
}
public static void main (String args[]) {
 Thread t1 = new MyThread("T1"); // Crée l’objet T1
 Thread t2 = new MyThread("T2"); // Crée l’objet T2
 t2.start(); // start appelle la méthode run() de T2;
 t1.start(); // start appelle la méthode run() de T1
}

Java 
Lightweight process (Thread)

■ We inherit from the Thread class by overloading the Run
method

■ We create the Thread object and start it with the
predefined method start ()

L. Pautet

Java 
Runnable 1/2

■ We inherit the Runnable interface and override the Run
method

■ We create a Runnable object and a Thread object that
we associate in the thread constructor

■ We delegate the execution of the Runnable (delegate)
■ We start the thread with start () which activates the run

() method of the Runnable object
■ The Runnable object is therefore not in the Thread

inheritance tree

L. Pautet

Java 
Runnable 2/2

class MyRunnable implements Runnable {
 String name;

 public MyRunnable (String s) {name = s;}
 public void run() {
 System.out.println("Execute " + name);

 }

}

void main (String args[]) {
 MyRunnable r1 = new MyRunnable("R1");
 MyRunnable r2 = new MyRunnable("R2");
 new Thread(r2).start(); // Create and start object R2
 new Thread(r1).start(); // Create and start object R1
}

L. Pautet

Java 
Threads operations

■ t.start() is used to activate thread t
■ run(), launched by start (), must be overloaded
■ sleep(d) suspends current thread for a duration d (ms)
■ t.setprio(p) sets a priority p to a thread t
■ yield() gives control to the next thread of the same

priority, or to the first thread of lower priority
■ t.join() waits for the end of thread t
■ t.join(d) waits for the end of thread t for a period d (ms)

L. Pautet

Java 
Synchronisation

■ The final value of n.v can be different from 20,000
■ The add operation is not necessarily atomic, it can be broken

downas follows:
■ Load v in a register
■ Increment register
■ Store register in v

class MyInt {
 int v;
 void add (int i) {v=v+i;}
}
class MyThread extends Thread {
 static MyInt n = new MyInt(0);
 public void run() {
 for(int i=0; i<10000; i++) n.add(1);
 }
}

static void main(String args[])
{
 Thread t1, t2;
 t1 = new MyThread ("T1");
 t2 = new MyThread ("T2");
 t1.start ();
 t2.start ();
}

L. Pautet

Java 
 synchronized method

■ Each object is associated with its own lock. The object is
locked
■ When calling a synchronized method
■ In a block qualified as synchronized

class MyInt {
 int v;
 synchronized void add (int i){
 v=v+i;
 }
 void sub (int i) {
 synchronized (this){v=v-i;}
 }
}

L. Pautet

Java 
synchronized method

■ The execution of a synchronized method forbids
execution of any synchronized method of the
object executed by another thread

■ The same thread can recall a method
synchronized object (reentrant lock)

■ Calls to non-synchronized methods of the object
are always allowed

■ When an exception is raised in a synchronised
method, the lock is automatically released

L. Pautet

Java 
Wait, Notify and NotifyAll

■ wait, notify and notifyAll are predefined methods
■ They should only be used in synchronized methods
■ They work according to the specifications of wait, signal,
■ broadcast of POSIX API conditional variables
■ ... but provide no return code !
■ wait() suspends the current thread and releases the

object lock. The thread, once resumed, gets lock back.
■ notify() resumes a thread suspended on wait()
■ notifyAll() resumes any thread suspended on wait()

L. Pautet

Java 
Sem=Mutex+VarCond

■ A semaphore can be implemented in Java …
■ This implementation is incorrect … why ?

■ Consider the following scenario:
■ First, thread T1 is blocked on acquire()
■ Thread T2 executes release() and thread T3 acquire()

class MySem {
 int count;
 synchronized acquire(){
 if (count == 0)wait();
 count--;
 }

 synchronized release() {
 if (count == 0)notify();
 count++;
 }
}

L. Pautet

Java 
Sem=Mutex+VarCond

■ Implementation still incorrect … why ?
■ Consider the following scenario :
■ First, two threads are blocked in acquire()
■ A thread executes release(), then another one does the same

class MySem {
 int count;
 synchronized acquire() {
 while (count == 0)
 wait();
 count--;
 }

synchronized release() {
 if (count == 0)notify();
 count++;
 }
}

L. Pautet

Java 
Sem=Mutex+VarCond

■ An implementation (almost) correct (without interrupts)
■ Java documentation : 

A thread can also wake up without being notified, interrupted, or
timing out, a so-called spurious wakeup.

■ In other words, do not assume that a thread always returns from
wait due to notify, notifyAll or a timeout

class MySem {
 int count;
 synchronized acquire(){
 count--;
 if (count < 0)wait();
 }

 synchronized release() {
 count++;
 if (count <= 0)notify();
 }
}

L. Pautet

Java 
Sem=Mutex+VarCond

■ Correct implementation (catch exceptions / interrupts)
■ Advice: do not assume notify() resume the thread you expected

unless you can prove it …
■ Use notifyAll() instead of notify(): less efficient but safer

class MySem {
 int count;
 synchronized acquire(){
 while (count <= 0)
 try {wait();}
 catch(Exception e{})
 count--;
 }

 synchronized release(){
 count++;
 notifyAll();
 }
}

L. Pautet

Semantic behaviour  
of wait and notify

■ Wait() causes the current thread (T) to place itself in the wait set for this object (O) and
then to relinquish any synchronization claims on O. T becomes disabled for thread
scheduling purposes and lies dormant until [notified or interrupted]

■ T is then removed from the wait set for O and re-enabled for thread scheduling. It
then competes in the usual manner with other threads for the right to synchronize on the
object  

■ Notify wakes up a single thread that is waiting on this object's monitor. If any threads are
waiting on this object, one of them is chosen to be awakened. The choice is arbitrary and
occurs at the discretion of the implementation. 

■ wait set does not indicate how the queue is managed. arbitrary does not indicate
nothing on queue management (FIFO, FIFO within priority, etc.) and 
the interaction with the scheduler (thread scheduling) is not specified .

 
Be careful with the assumptions made about semantics

.

L. Pautet

Java 
Timed wait

■ Like POSIX, wait has a timed version
■ wait (long timeout) returns without specifying whether

the relative delay (duration) has expired or a
notification has been made

■ pthread_cond_timedwait takes as parameter temporal an
absolute delay (date)

■ System.currentTimeMillis () provides access to the clock
■ wait (0) corresponds to wait ()
■ We can transform, with precautions, in relative delay and

vice versa

L. Pautet

Java 
absolute delay vs relative delay

■ POSIX (resp Java) uses absolute delays (resp relative delays)
■ Transforming an absolute delay into a relative one may be incorrect
■ Below, abstime = 15:30 but the thread is resumed at 15:40
synchronized boolean acquire(long abstime){
 while (count == 0){
 try {wait(abstime - System.currentTimeMillis());break;
 } catch (InterruptedException e) {};
 };
 if (count > 0) {count--; return true;}
 else return false;
}

0 15:1
0

15:
20

15:
30

15:
40

15:
50

16:
00

currentTimeMillis wait (30 – 10) resume at 40 wait and delay comp. are not atomic
t1

t2 has a higher
priority than t1

t2

L. Pautet

Java 
Differences between POSIX and Java

■ In POSIX, wait() takes as a parameter any mutex and
conditional variable that the user has allocated

■ Typically, it can use the same mutex for two different
conditional variables and it is easy to let a thread block on
two queues without introducing deadlocks

■ In Java, an object has a single mutex and a single
conditional variable and it may be tricky to let a thread
block on two queues without introducing deadlocks

■ In Java, wait implicitly takes as a parameter the simutex
and the conditional variable of the object

■ The Java machine oftenly relies on the library POSIX

Laurent Pautet & Jérôme Hugues 49

Java 
Interaction between Java and POSIX

■ Each layer provides its
abstraction level and semantics

■ Language constructs are
expanded by the compiler to
fit those of the lower layer

■ Examples :
■ Thread Java => Thread POSIX
■ Wait/Notify => Mutex+CondVar
■ CurrentTimeMillis ⬄ Timer

Hardware

Application

Predefined Java classes
(Thread)

Java Virtual Machine

POSIX Library

UNIX Kernel

L. Pautet

Java 
JDK 1.5

■ Basic Java mechanisms do not always allow the user to
effectively implement more complex mechanisms such as
semaphore, barrier, etc.

■ Other concurrency mechanisms are very common like
POSIX ones but also like concurrency design patterns

■ JDK1.5 provides through libraries additional concurrency
mechanisms directly implemented at JVM level

■ In particular, JDK1.5 provides more direct access to
POSIX functions than the original JDK

L. Pautet

Java 
JDK 1.5 (POSIX and Patterns)

■ POSIX:
■ (Reentrant) Lock
■ Conditional Variable
■ Semaphore

■ (Many) Patterns:
■ BlockingQueue : already presented
■ Callable and Future : a Callable request corresponds to a Runnable

but also returns a result stored in a Future object
■ ExecutorService : manage a pool of threads and execute

asynchronously requests through threads from the pool
■ Barrier: block threads as long as # blocked threads < N
■ Latch: block threads while # ressources > 0 (join)

L. Pautet

Java 
Using POSIX for Java

■ Be careful with the combined use of synchronization
mechanisms specific to POSIX and those specific to Java

■ POSIX for Java timed methods take always relative
times as parameters and not absolute times as in C

■ Beware of exceptions that may leave POSIX for Java
locks in an inconsistent state

■ POSIX for Java can define several queues for the same
lock while native Java synchronizations do not offer (a
single lock and a single conditional variable per object)

L. Pautet

Java 
Waiting on guard (POSIX/Java)

■ Block a thread while a variable is not equal to a
given value passed as parameter

Lock mutex = new ReentrantLock();
Condition update= mutex.newCondition();

void setX(int y){
 try {  

 mutex.lock();
 x = y;  

 update.signalAll();
 } finally {mutex.unlock();}
}

void waitForXEqual(int y){
 try {
 mutex.lock();  

 while (x != y) update.await();
 } finally {mutex.unlock();}
}

L. Pautet

Plan

■ Lightweight processes
■ POSIX Library
■ Java Language
■ Design Patterns

L. Pautet

Design patterns  
Creational, Structural, Behavioural, …

■ Well-known problems and well-known solutions
■ Hypothèses d’utilisation
■ Algorithme sous-jacent
■ Ressources utilisées et complexité

■ Design patterns (Gang of Four)
■ Creational (Factory, Singleton, …)
■ Structural (Adaptor, Proxy, Facade, …)
■ Behaviour (Strategy, Observer, …)

■ Typical example : MVC for Model View Control

L. Pautet

Design Patterns  
JDK 1.5

■ POSIX offers basic mechanisms and requires sometimes
complex implementations to solve common problems

■ Java offers native mechanisms and induces sometimes
inefficient implementations for common problems

■ Design patterns for concurrency offer additional libraries
aiming to overcome these difficulties.

■ Design Patterns and POSIX like mechanisms have been
introduced in Java libraries (JDK 1.5).

L. Pautet

Patrons de conception 
C/POSIX vs Java/JDK

■ C / POSIX offers only few patterns
■ Java / JDK offers many patterns
■ Important to know these patterns so as not to

reinvent their specification and implementation
■ Important to know how to correctly implement

them independently from the language (in C)
■ Important to know their assumptions, used

resources and implementation complexity

L. Pautet

Patron de conception 
Blocking Queue

■ Pattern: mailbox or blocking queue.
■ put : add an element, block if queue is full
■ get: remove an element, block if queue is empty
■ Semantic variations:

■ Blocking, non-blocking, timed semantics
■ Data structure : array, list … sorted or not
■ Synchronisation mechanisms

L. Pautet

Design Patterns  
Blocking Queue (native Java)

■ Notification mechanisms should be smart …
■ … only when the queue is no longer full or empty

■ 2 blocking conditions => 1 queue only (inside object)

synchronized Object get() {
 while (size == 0)
 wait();

 // Wake up if needed
 if (size == MAX)  

 notifyAll();
 Object o = b[first];
 size--;
 first=(first+1)% MAX;
 return o;
}

synchronized put(Object o) {
 while (size == MAX)
 wait();

 // Wake up if needed
 if (size == 0)
 notifyAll();
 last=(last+1)% MAX;
 size++;
 b[last] = o;
}

L. Pautet

Design Patterns  
Blocking Queue (POSIX for Java)

■ 2 blocking conditions => 2 queues (conditions variables)
Lock mutex= new ReentrantLock();
Condition notFull = mutex.newCondition();
Condition notEmpty = mutex.newCondition();

void put(Object o){
 try {mutex.lock()  

 while (size == MAX)
 notFull.await();
 if (size == 0)
 notEmpty.signalAll();  

 b[last] = o; size++;  
 last=(last+1)%MAX;

 } finally {mutex.unlock();}
}

Object get(){
 try {mutex.lock();  

 while (size == 0)
 notEmpty.await();
 if (size == MAX)
 notFull.signalAll();  

 Object o = b[first];  
 first=(first+1)%MAX; size--;

 } finally {mutex.unlock();
 return o;}
}

L. Pautet

Design Patterns  
Blocking Queue (Java + POSIX)

■ This hybrid implementation causes deadlocks
■ Synchronized badly used

Semaphore emptySlots = new Semaphore(MAX);
Semaphore fullSlots = new Semaphore(0);

synchronized put(Object o){
 emptySlots.acquire();
 last=(last+1)% MAX;
 size++;
 b[last] = o;
 fullSlots.release();
}

synchronized Object get(){
 fullSlots.acquire();
 Object o = b[first];
 size--;
 first=(first+1)% MAX;
 emptySlots.release();
 return o;
}

L. Pautet

Design Patterns  
BlockingQueue (JDK)

■ BlockingQueue : data storage interface protected against
concurrent access

■ ArrayBlockingQueue : fixed size, FIFO
■ LinkedBlockingQueue : fixed or dynamic size, FIFO
■ PriorityBlockingQueue : dynamic size, Comparables

Exception Value Block Timeout

Insert add (o) offer (o) put (o) offer (o, timeout, timeunit)

Remove remove (o) poll () take () poll (timeout, timeunit)

Read element () peek ()

L. Pautet

Design Patterns  
Tasks without defining Threads

■ We want to execute tasks (or requests) asynchronously:
we execute them in parallel and get the result later.

■ The ExecutorService offers a way to submit tasks and
execute them asynchronously with its internal threads

■ A task is an object (not a thread) implementing an
interface such as Callable or Runnable. It may be stored
in a BlockingQueue while waiting for being executed

■ According to its policy, the ThreadPool allocates an
internal thread or reuse an existing one to execute tasks

■ It defines the number and lifetime of internal threads
■ The task result is stored in a Future object.

L. Pautet

Design Patterns  
Asynchronous execution

■ executor provides 5 threads to asynchronously
execute objects of interfaces Runnable or Callable

■ Submitting a Callable returns a Future object that
will be used to get the computation result back

ExecutorService executor =
Executors.newFixedThreadPool(5);

Future future = executor.submit(new Callable(){
 public Object call() throws Exception {
 System.out.println("Asynchronous Callable");
 return "Callable Result";}});
System.out.println("result = " + future.get());

Laurent Pautet

Design Patterns  
Runnable, Callable and Future

■ We submit Callable and obtain a Future object to get the
result back when desired and available (otherwise block)

■ Unlike a Callable object, a Runnable object does not
return any results

callable future

callable future

runnable

submit submit submit get get

main

L. Pautet

Design Patterns  
ThreadPool

■ The ThreadPool manages Threads that execute tasks
(Callable) stored in a BlockingQueue

■ The first corePoolSize submissions lead to creation of
Threads even if the already created ones remain inactive

■ When corePoolSize Threads are created, they execute the
tasks stored in the BlockingQueue

■ When the BlockingQueue becomes full, the number of
Threads increases until it reaches maxPoolSize

■ If it remains full, new submissions throws exception
■ Inactive Threads are destroyed after keepAliveTime,

the number of Threads stays greater than corePoolSize

Laurent Pautet

Design Patterns  
Threadpool and BlockingQueue

Queue 4 5 6 7 8 9 A B

Queue size = 3

Max Thr 5 7

Max Thr 4 6

Max Thr 3 4 5

Max Size = 5

Core Thr2 2

Core Thr 1 1 3

Core Size = 2

main 1 2 3 4 5 6 7 8 9 A B

L. Pautet

Design Patterns  
Predefined ThreadPools

■ newFixedThreadPool :
■ Fixed size, corePoolSize = maxPoolSize

■ newSingleThreadPool :
■ Fixed size, corePoolSize = maxPoolSize = 1

■ Parameter keepAliveTime
■ If poolSize is greater than corePoolSize and if

BlockingQueue is empty, threads may be destroyed
■ They wait for keepAliveTime and check the above

conditions before terminating
■ keepAliveTime = 0 means immediate

L. Pautet

Design Patterns  
ExecutorService

■ Configure BlockingQueue, ThreadPool , …
■ execute (Runnable r) delegates the execution of

r to a thread. A Runnable returns nothing.
■ submit (Runnable r) delegates the execution of r.

It returns a Future object f. f.get () blocks as
long as the execution is not completed.

■ submit (Callable c) delegates the execution of c.
It returns a Future object f. f.get () returns the
result of c when execution is completed.

L. Pautet

Design Patterns  
ScheduledExecutorService

■ ScheduledExecutorService is similar to ExecutorService
enriched with timed and periodic executions

■ schedule (Callable c, long d, TimeUnit u) delegates to a
Thread the execution of c which happens after a relative
startup delay d expressed in unit u.

■ scheduleAtFixedRate (Callable c, long d, long p, TimeUnit
u) executes task c periodically with period p and a relative
delay d expressed in unit u.

■ scheduleWithFixedDelay (Callable c, long d, long p,
TimeUnit u) executes c leaving a time p between the end
of the previous job and the start of the next one.

Laurent Pautet

Design Patterns  
Periodic Tasks

■ Periodic tasks do not return Future objects, they are
reactivated either with a fixed rate or delay

■ With a fixed rate, the activations are predetermined at
precise instants separated by a fixed time, the period

■ With a fixed delay, the next activation is dynamically
determined at the end of current activation + the period

period period period period

FixedDelay

period period period period period period period

FixedRate

L. Pautet

Design Patterns  
Leader / Followers

■ The Leader / Followers pattern (defined by D. Schmidt for distributed systems) provides a concurrency model where multiple
threads can efficiently de-multiplex events and dispatch event handlers that process I/O handles shared by the threads.

■ The issues come from the blocking (or non-blocking) requests and also from the memory used to get the request data
(copies and so on)

■ This pattern is a variant of thread pool. It differs on the way the leader is selected and then on the way the followers are
selected.

L. Pautet

Design Patterns  
Half-Sync / Half-Async

■ The Half-Sync/Half-Async architectural pattern (defined by D. Schmidt for concurrent systems)
decouples asynchronous and synchronous service processing in concurrent systems, to simplify
programming without unduly reducing performance.

■ This pattern is an instance of executor service.

L. Pautet

Design Patterns  
Lock for Readers / Writers

■ Protect a hashtable against concurrent accesses
■ We have a set of key-value pairs
■ From a key, we produce an (hash) index of a table
■ At a given index, the table contains a linked list
■ Each element in the list has the same index produced

by different key–value pairs
■ Frequent read operations, unfrequent write ones
■ Read operations can be executed in parallel
■ Write operations must be serialized

L. Pautet

Design Patterns  
Coarse Grained Lock

■ Lock the table in write mode even for read operations.
■ Or lock the table in write mode even for read operations

and then the lock of linked list.

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Coarse Grained Lock

■ Lock the table in write mode even for read operations.
■ Or lock the table in write mode even for read operations

and then the lock of linked list.

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Coarse Grained Lock

■ Lock the table in write mode even for read operations.
■ Or lock the table in write mode even for read operations

and then the lock of linked list.

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Coarse Grained Lock

■ Lock the table in write mode even for read operations.
■ Or lock the table in write mode even for read operations

and then the lock of linked list.

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
ReadWriteLock

■ Lock for read and write operations
■ Read access if there are no write operations or

write requests in progress
■ Write access if there are no write or read

operations in progress
■ Possible famine if write request occurs during an

uninterrupted sequence of read operations
■ The following implementation is non-reentrant

■ Beware of usage assumptions

L. Pautet

Design Patterns  
ReadWriteLock

int readers = 0;
int writers = 0;
int writeRequests = 0;

synchronized void lockRead(){
 while (writers > 0 ||
 writeRequests > 0) wait();
 readers++;
}
synchronized void unlockRead(){
 readers--;
 notifyAll();
}

synchronized void lockWrite(){
 writeRequests++;
 while (readers > 0 ||
 writers > 0) wait();
 writeRequests--;
 writers++;
}

synchronized void unlockWrite(){
 writers--;
 notifyAll();
}

L. Pautet

Design Patterns  
Fine Grained Lock

■ The following code explores a linked list with a
fine-grained control ...

■ Instead of locking a whole linked list, we lock an
element of the list and its precedent

■ We have to make compromises. Here, a gain in
execution is obtained by a loss of memory

■ It is always a matter of balance between CPU
usage and memory usage

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

6CB7

Y*9PD

084

21

5OA

L. Pautet

Design Patterns  
Fine Grained Lock

public boolean add(T item) {
 Node pred, current;
 int key = item.hashCode();
 head.mutex.lock();
 pred = head;
 try {
 Node current = pred.next;
 current.mutex.lock();
 try {
 while (current.key < key){
 pred.mutex.unlock();
 pred = current;
 current = current.next;
 current.mutex.lock();
 }

 if (current.key == key) return false;
 Node newNode = new Node(item);
 newNode.next = current;
 pred.next = newNode;
 return true;
 } finally {current.mutex.unlock();}
} finally {pred.mutex.unlock();}

L. Pautet

Design Patterns  
Fine Grained Lock

public boolean remove(T item) {
 Node pred = null, current = null;
 int key = item.hashCode();
 head.mutex.lock();
 try {
 pred = head;
 current = pred.next;
 current.mutex.lock();
 try {
 while (current.key < key){
 pred.mutex.unlock();
 pred = current;
 current = current.next;
 current.mutex.lock();
 }

 if (current.key == key) {
 pred.next = current.next;
 return true;
 }
 return false;
 } finally {current.mutex.unlock();}
} finally {pred.mutex.unlock();}

L. Pautet

 Design Patterns  
Barrier

■ The barrier is used to block N threads and unblock them when the N threads
are present

■ If the barrier is used twice in a row, the threads released the first round must
not cross the barrier immediately for a second round

■ A latch is a barrier. It decrements a counter and blocks until it is zero. It cannot
be reused. The implementation is less complex.

typedef struct _barrier_t {
 pthread_mutex_t mutex;
 pthread_cond_t cv;
 int threshold;
 int counter;
 int cycle;
} barrier_t;

L. Pautet

 Design Patterns  
Barrier

pthread_mutex_lock (&barrier->mutex);
cycle = barrier->cycle
if (--barrier->counter == 0) {
 barrier->cycle = !barrier->cycle;
 barrier->counter = barrier->threshold;
 pthread_cond_broadcast (&barrier->cv);
} else
 while (cycle == barrier->cycle)
 pthread_cond_wait (&barrier->cv, &barrier->mutex);
pthread_mutex_unlock (&barrier->mutex);

L. Pautet

Design Patterns  
Conclusions

■ Design patterns are essential in the design of
concurrent systems

■ Beware of usage assumptions
■ Beware of the algorithm and the complexity
■ Pay attention to the resources used
■ Balance between execution and memory perf.
■ Beware of copy / paste, especially for Java!
■ Internet is your friend only if you use it wisely

