SE205 - TD6 Enoncé

General Instructions

* You can download all source files from the assignment on Moodle.

1 Simple Hello World (20 minutes)
Aims: Compile and run an application with Akka actors.

Download the source code for today’s TD and decompress the archive. Then, inspect the
source code of the example in the sub-directory src/td6_1.

» How many actors are involved in this simple Hello World program?

« Draw a diagram representing their interactions.

» Compile the source code with the ant tool. Use the target compile and jar, e.g.,
ant compile.

* Run the compiled program, again, using the ant tool and the target run-hello.

* Modify the Greeter actor so that it prints its own path as well as the path of the sending
actor whenever it receives a GREET message.

* Modify the HelloWorld actor in order to change the name of the Greeter actor (you
may choose any name you like).

2 Asynchronous Bellman-Ford (7o minutes)
Aims: Implement a non-trivial algorithm using actors.

The goal of this exercise is to implement the Bellman-Ford algorithm using asynchronous mes-
sage passing. The algorithm computes the length of the shortest path from a given root node
to each other node in a directed graph. The length of a path is the sum of the weight asso-
ciated with each edge on the path. For the example below, for instance, the algorithm would
yield a shortest path of length 7 from node N1 to N4. While the shortest path from N1 to N3
evaluates to 8.

N15N23N32N4

\/

7




A description of the sequential algorithm and an interactive website demonstrating its operation
are available at the following website:

https://www-m9.ma.tum.de/graph—-algorithms/spp—-bellman-ford/index_en.html

In an asynchronous implementation of the algorithm the nodes and edges of the graph are sim-
ply actors exchanging messages. The messages themselves represent the lengths of paths
originating at the root node. These lengths are iteratively refined as shorter paths are discov-
ered. We will assume that three kinds of actors exist in the system: (1) Graph, (2) Node, and
(3) Edge.

The Graph actor represents the entire graph (including edges and nodes) and controls the
computation. In our case it will read the definition of the weighted graph from a file, where
each line defines an edge as follows:

[source node name] =[edge weight]> [destination node name]
For instance, the line “a =5> c¢” defines an edge from a node named “a” to another node
named “c” with weight 5. Nodes are defined implicitly, i.e., each node name appearing in the
definition of an edge implicitly defines the node. An example file for the graph shown in the
figure above is included in the downloaded source code package (data/simple.graph).
The root node is given by the source node of the first edge. Each node tracks the shortest path
from the root node to itself using a member variable (shortestPathWeight).

The asynchronous Bellman-Ford algorithm then consists of exchanging messages between
Node and Edge actors representing the graph. The computation starts when the Graph actor
send a message 0 to the root node, i.e., the shortest path from the root node to itself obviously
has length 0. In response to this message, the root node updates its shortestPathWeight
variable and then send a message to all out-going edges informing them that a shorter path
was discovered. The Edge actors in response to this message send a message to their respec-
tive destination nodes by adding their own weight to the weight of the in-coming message. The
destination nodes in turn update their shortestPathWeight variables if the path is indeed
shorter and send messages to their out-going edges. It is easy to see that this processing will
stabilize at some point and gives the correct length of the shortest path at each node.

For the example graph from above, the Graph actor would send a message 0 to the Node actor
N1, which updates its shortestPathWeight variable and sends messages containing 0
to the actors representing its out-going edges N1 — N2 and N1 — N4. The Edge actors
send messages 5 (0 + 5) and 7 (0 + 7) to the node actors N2 and N4. Both update their
shortestPathWeight variables. N4 does not have any out-going edges and thus is done.
N2, however, will send a message 5 to the actor representing its out-going edge, which in turn
will send a message 5 (5 + 3) to Node actor N3. N3 will update its shortestPathWeight
variable and send a message 10 (8 +2), via the Edge actor N3 — N4, to N4. N4 already knows
a shorter path and thus is done. No further messages are sent and the algorithm ends.

A basic code skeleton of the asynchronous Bellman-Ford algorithm is available with the source
that you downloaded, in sub-directory src/td6_2. The code skeleton does not compile or run
in its current form. You need to complete the source code by following the steps below:

» The provided code skeleton consists of four Java source files in the sub-directory src/td. 2.
Carefully read the source code and try to understand its operation.


https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html

Given the provided code and the description of the algorithm from above, draw a diagram
representing the messages exchanges between the various actors in the system.

Try to compile and run the given source code using ant and the target run-bf. This will
fail, since some methods are currently not implemented.

Implement the preps method of the Edge class. Try to re-run/compile the program and
check which functions are missing.

Hint: See the lecture slides for an example.

Implement the message handling method of the Edge class. Your code should only han-
dle messages containing integer values and signal all other kinds of unexpected mes-
sages as indicted in the lecture. Once the actor receives a message containing an inte-
ger value, add the edge’s own weight to the in-coming value and send the result to the
destination node.

Hint: See the lecture slides to get started. You can use the instanceof operator to
check the type of the in-coming message.

Implement the message handling method of the Node class. Your code should only han-
dle messages containing integer values and signal all other kinds of unexpected mes-
sages. Once the actor receives a message containing an integer value, compare the
shortest path known for the node (shortestPathWeight) with the in-coming value. If
the length of newly discovered path is shorter, update the node’s member variable and
send a message to its out-going edges.

Hint: Use getContext () .actorSelection () in order to find all edges originating at
the current node. You need to construct a string pattern containing a part (substring)
of the Node actor's name (getSelf () .path () .name ()). See the Graph class to see
how Edge and Node actor names are constructed.

Your code should now compile and run. Verify by running ant using the target run-bf.

Now reread the source code and determine how the Graph actor learns the lengths of
the shortest paths from each node.

Finally, try to determine how and when the actor application terminates? Is there a way
for the Graph actor to determine that the shortest path lengths of the various nodes have
stabilized?



	Simple Hello World (20 minutes)
	Asynchronous Bellman-Ford (70 minutes)

