
Programmation Concurrente
CM7 - The Actor Model

Florian Brandner & Laurent Pautet
LTCI, Télécom ParisTech, Université Paris-Saclay

x
Outline

Course Outline

• CM1: Introduction
• CM2: The shared-memory model
• CM3-6: Concurrent programming POSIX/Java (L. Pautet)

Patterns and Algorithms (L. Pautet)

• CM7: Actor-based programming (me)
• Definition of actors
• Actor primitives and concepts
• Brief introduction to Akka Actor Library

• CM8: Transactional memory (me)

3/39

x
Recapture

Shared-Memory Model

• All processors/threads share the same main memory
• Data is exchanged through that memory
• Data is shared through that memory
• Threads synchronize through that memory

• Concurrent accesses
• Might cause some troubles
• Coherency: how do threads agree on the latest value?
• Consistency: in which order do updates appear globally
⇒ Memory models cover both aspects

Is this the only model?

5/39

Shared-Memory Model

• All processors/threads share the same main memory
• Data is exchanged through that memory
• Data is shared through that memory
• Threads synchronize through that memory

• Concurrent accesses
• Might cause some troubles
• Coherency: how do threads agree on the latest value?
• Consistency: in which order do updates appear globally
⇒ Memory models cover both aspects

Is this the only model?

5/39

Sockets

Do not require shared memory:
• Allow to send messages over a network

• Various protocols possible (UDP, TCP/IP, . . .)
• Receiver has to listen for messages (recv, recvfrom)
• Similar interface as regular files

• Name vs. addresses
• Machine names to find receiver (gethostbyname)
• No common naming of services (port numbers)

• Available almost everywhere (C, Java, . . .)
• But cumbersome to use
• Can we do better?

Can we generalize this?

6/39

Sockets

Do not require shared memory:
• Allow to send messages over a network

• Various protocols possible (UDP, TCP/IP, . . .)
• Receiver has to listen for messages (recv, recvfrom)
• Similar interface as regular files

• Name vs. addresses
• Machine names to find receiver (gethostbyname)
• No common naming of services (port numbers)

• Available almost everywhere (C, Java, . . .)
• But cumbersome to use
• Can we do better?

Can we generalize this?

6/39

x
The Message-Passing Model

Message Passing between Computers

General concept, with many different implementations:
• Several processors in potentially many computers
• No globally shared memory accessible to all processors
• Information exchange is based on messages

Network

I/D$ I/DI/D I/D$

CPU0 CPU1 CPU2 CPU3

Memory Memory Memory Memory

8/39

Main Issues

Very different problems (w.r.t. shared-memory model):
• How is data exchanged?

(point-to-point messages, broad-, multi-cast)

• How are data and computations distributed?
(computations impossible without data)

• How can one balance the load between computations at
processors and the communication over the network?

⇒ Coarser form of parallelism due to cost of communication
⇒ Almost exclusively controlled by programmer
⇒ (few tools available)

9/39

Implementations

Several programming frameworks/languages are based on
message passing:

• OpenMPI (http://www.open-mpi.org/)
C, C++, Fortran library for large-scale parallel computing
using message passing (often used in scientific computing)

• Erlang (http://www.erlang.org/)
Old functional programming language that was recently
rediscovered. Parallelism is based on actors
(computations), which exchange information through
message passing.

• Stream programming (StreamIt) and synchronous
programming languages (Lustre, Esterel, SCADE)

• . . .

10/39

http://www.open-mpi.org/
http://www.erlang.org/

x
The Actor Model

Actors

Basic unit of computation:
• Actors can communicate among each other
• Actors can compute in response to a message
• Actors can create other actors
• Actors can designate how to handle the next message

Definition goes back to Carl Hewitt (70’s), and was
later refined by Gul Agha (80’s).

12/39

Actors (2)

Additional features:
• Each actor has a unique name
• Each actor has its own private state (no global state)
• Pending messages are kept in a mailbox1 (treated later)

1This is optional

13/39

Communication

Weak guarantees concerning communication
• Communication is one-way and asynchronous

(neither sender nor receiver is blocked)

• Messages are delivered in best-effort manner
(messages may be lost or delayed infinitely)

• Message order is not defined, except:
• A message is sent before it can be received
• Even for messages of the same actor
• No other guarantees

• Actors may communicate names of actors

14/39

Computation

Messages are handled atomically by actors
• Raise level of abstraction when reasoning about actors
• Instead of micro steps (instructions) . . .
• . . . use macro steps (handling of messages)
• Absence of global state simplifies things

15/39

How is an Actor implemented?

Simplistic model based on pseudo code:

while (true)
{

while (!mailbox.empty())
{

// actor can chose which message to handle
// next (e.g., through priorities)
msg = mailbox.select_next_message()

// perform action depending on message type
switch (msg)
{
// create actors, send messages, compute, ...
case ...
case ...
case ...

}
}

}
16/39

Example: Actors

State

Code

Mailbox

State

Code

Mailbox

State

Code

Mailbox

cre
ate

s
e
n
d

send

17/39

Example: Actors

State

Code

Mailbox

State

Code

Mailbox

State

Code

Mailbox

cre
ate

s
e
n
d

send

Could be a thread

Might be another machine

17/39

x
Actor Semantics

Encapsulation and Atomicity

• Actors do not share state
• Data is exchanged using messages
• Data is effectively copied

• Actors handle one message at a time
• Many actors may work concurrently
• However, each actor only processes one message at a time
• Message processing appears atomic for external observers

This ensures the absence of race conditions on variables
(deadlocks due to message processing are still possible).

19/39

Fairness

• An actor makes progress whenever it has some
computation to do

• An actor processes one of pending messages otherwise
• Actors may still select which message to process next
• This can be used to prioritize message processing

This ensures global progress of the entire system.

20/39

Location Transparency

• The location of an actor does not affect its name
• The location of an actor does not affect message passing

• After termination of an actor another may take its name
• This is useful, for instance, to restart crashed actors
• This can also be used to migrate actors from one location

to another

This improves robustness and portability.

21/39

x
Communication Patterns

RPC-like Requests

Messages are one-way, thus
• Client and server need to send messages back and forth
• Client has to remember that it waits for a reply
• This is similar to remote procedure calls (RPC)

Client Service A Service BTim
e

1 st
request

1
st rep

ly

2ndrequest

2
ndreply

Remember to
wait for reply

23/39

RPC-like Requests

Messages are one-way, thus
• Client and server need to send messages back and forth
• Client has to remember that it waits for a reply
• This is similar to remote procedure calls (RPC)

Client

1st

reply

2nd

reply

Service A Service BTim
e

1 st
request

1
st rep

ly

2ndrequest

2
ndreply

Remember to
wait for reply

23/39

Local Message Constraints

Messages acceptance may depend on history:
• Actor may expect specific sequences of messages
• Message acceptance may thus depend on the actor’s state
• Predicates and message filters can be applied to mailbox

Client File Service

open

append|close

append|close

Tim
e

open

ope
ned

append

close

repeat

24/39

Pipelining

Handle message sequences in parallel:
• Similar to the idea of piplined processors (SE201)
• Cascade of actors, each handling a step of the sequence
• All of these actors work in parallel

Phase A Phase B Phase C Phase DTim
e

continue

continue

continue

25/39

Divide and Conquer/Map-Reduce

Popular parallelization technique:
• Divide work into smaller pieces
• Scatter pieces to worker actors for processing
• Gather replies to constitute final answer

Master Worker A Worker B Worker C Worker DTim
e

scatter
scatter scatter

scatter
scatter scatter

scatter
scatter scatter

gathergathergather gathergathergather gathergathergather

26/39

Combining Patterns

Patterns can of course be combined:
• RPC-like requests combined with local constraints and pipelining
• Note: the RPC request creates the second pipeline step

Client Phase A

append|close

append|close

File Service

open

open

open

Phase B

append|close

ClientTim
e

open

opene
d (A)

cr
ea
te

append open

opened (B)
create

app
endclose

27/39

x
The Akka Actor Library

Akka Actor Library

• Allows to implement actors in Java (also Scala)
• Provides naming service (to find actors)
• Provides communication service (for message passing)
• Provides utility functions and classes

(fault-tolerance, watchdogs, . . .)

• Akka is open-source:2

http://akka.io/

2We use version 2.3.14 for Java 6.

29/39

http://akka.io/

Actor Lifecycle in Akka

30/39

Defining Actors

Simply by defining a new class:

import akka.actor.UntypedActor;

public class MyActor extends UntypedActor {
@Override
public void onReceive(Object msg) {
// code goes here. for now, ignore all messages
unhandled(msg);

}
}

http://doc.akka.io/docs/akka/2.3.14/java/untyped-actors.html

31/39

http://doc.akka.io/docs/akka/2.3.14/java/untyped-actors.html

Instantiating an Actor
First, define a Props, i.e., a kind of receipt:

import akka.actor.UntypedActor;
import akka.actor.Props;
import akka.japi.Creator;

public class MyActor extends UntypedActor {
public static Props props() {
return Props.create(new Creator<MyActor>() {
private static final long serialVersionUID = 1L;

@Override
public MyActor create() throws Exception {

return new MyActor();
}

});
}

}

http://doc.akka.io/japi/akka/2.3.14/akka/actor/Props.html

32/39

http://doc.akka.io/japi/akka/2.3.14/akka/actor/Props.html

Instantiating and Initializing an Actor
Then, instantiate the actor in the current context:

import akka.actor.UntypedActor;
import akka.actor.Props;
import akka.japi.Creator;
import akka.actor.ActorRef;

public class MyActor extends UntypedActor {
@Override
public void preStart() {
// actually create actor and obtain an actor reference
final ActorRef actorInstance =

getContext().actorOf(MyActor.props());

// send a message to the newly instantiated actor
actorInstance.tell(1, getSelf());

}
}

http://doc.akka.io/japi/akka/2.3.14/akka/actor/Actor.html

33/39

http://doc.akka.io/japi/akka/2.3.14/akka/actor/Actor.html

Start-up of Akka Applications

Instantiate a first actor, which then takes over:

import akka.actor.UntypedActor;

public class MyActor extends UntypedActor {
public static void main(String[] args) {

// Simply tell Akka to create an actor, which takes over
akka.Main.main(new String[] { MyActor.class.getName() });

}
}

http://doc.akka.io/japi/akka/2.3.14/akka/Main.html

34/39

http://doc.akka.io/japi/akka/2.3.14/akka/Main.html

Actor Selection
Find actors using their names/paths:

import akka.actor.UntypedActor;
import akka.actor.ActorSelection;

public class MyActor extends UntypedActor {
public void mySendTo(String pattern) {
// find all actors matching the pattern
ActorSelection selection =

getContext().actorSelection(pattern);

// send the same message to all of the selected actors
selection.tell(2, getSelf());

}
}

http://doc.akka.io/japi/akka/2.3.14/akka/actor/ActorSelection.html

35/39

http://doc.akka.io/japi/akka/2.3.14/akka/actor/ActorSelection.html

Message Passing

• Messages should be immutable
(Java does not allow to enforce this, so its merely a convention)

• Three distinct primitives for sending:
• Non-blocking without reply (tell())
• Non-blocking providing a reply through a future (ask())
• Forwarding of messages (forward())

• Message retrieval:
• Automatically handled by Akka (onReceive())
• Signal unexpected messages (unhandled())

36/39

Additional Functions

Some utility functions
• Use actor reference (ActorRef) to manipulate (other) actors:

• Get reference to current actor (getSelf())
• Get sending actor of current message (getSender())
• Get actor path and name (path().name())

• Use context to interact with the environment:
• Create actors (getContext().actorOf())
• Terminate actors (getContext().stop()))
• Get parent actor (getContext().parent()))
• Get child actors (getContext().children()))

• More functions:
• Fault tolerance (monitoring, hot-swapping, watchdogs, . . .)
• Message passing (routing, dispatching, mailboxes, . . .)
• . . .

37/39

Summary
• Brief introduction to the Actors Model:

• Basic unit of computation
• Only has private state
• Reacts to incoming messages
• Can create actors, compute, and send messages
• Only communicates via messages (no global/shared state)

• Principles:
• Encapsulation and atomicity
• Fairness
• Location transparency

• Communication patterns:
• RPC-like requests (in Akka: ask())
• Local message constraints (in Akka: stash())
• Pipelining (in Akka: pipe())
• Divide and conquer (map/reduce)

• Introduction to the Akka Actor Library

38/39

Further Reading

• Actor Model of Computation: Scalable Robust Information
Systems Carl Hewitt (arxiv, 2010-2015)

• Actors
Rajesh K. Karmani and Gul Agha (Encyclopedia of Parallel
Computing, 2011)

• Actors: A Model for Reasoning about Open distributed Systems
Gul Agha, Prasannaa Thati, Reza Ziaei (Formal Methods for
Distributed Processing: A Survey of Object-Oriented
Approaches, 2001)

39/39

