
Programmation Concurrente
CM1 - Introduction to Parallelism

Florian Brandner & Laurent Pautet
LTCI, Télécom ParisTech, Université Paris-Saclay

x
Outline

Course Outline

• CM1: Introduction
• Forms of parallelism
• Computer architectures exploiting parallelism
• Parallel programming paradigms
• Amdahl’s law and dependencies

• CM2: The shared-memory model (me)
• CM3-6: Concurrent programming POSIX/Java (L. Pautet)

Patterns and Algorithms (L. Pautet)
• CM7: Actor-based programming (me)
• CM8: Transactional memory (me)

3/34

Organization

• Control continue: 25%
• Two multiple choice tests (QCMs)

(first 10 minutes of TD2 & TD7, be on time!)
• Graded TP later on by LP

• Exam: 75%
• All course material allowed

• Course material:

https://se205.wp.imt.fr/

• I like group exercises ...

4/34

https://se205.wp.imt.fr/

x
Introduction

Group Exercise: Forms of parallelism

What is parallelism?
• Form groups of 2-3 persons
• Discuss what forms of parallelism exist in computer

science
• Think about:

• Computer architectures/hardware
• Programming languages/paradigms
• Granularity/level of parallelism (what is parallelized?)

• You have 5 minutes

6/34

Forms of parallelism

A view on computer architectures
• Computers perform computations
• Parallel computers perform (some) computations in parallel
• Capabilities may vary between computer architectures

(which developed of course over time)

Time

ld r1, (a)

ld r2, (b)

add r3, r1, r2

st (c), r3

A sequential, non-parallel processor (SISD)

7/34

Pipelining (80s)

• Computers execute instructions to perform a computation
• Decompose instructions into steps

• Read the instruction from memory
• Read the instruction’s operands
• Perform the computation
• Write the result

• Perform these steps in parallel for different instructions

Time

ld r1, (a)

ld r2, (b)

add r3, r1, r2

st (c), r3

A simple pipelined processor (still SISD)
8/34

Instruction-level parallelism (ILP, 90s)

• Execute (independent) instructions in parallel
We will come back to dependencies later today.

• Implementations:
• Super-scalar or Very Long Instruction Word (VLIW)
• Hardware/software detects independence online/offline
• Usually combined with pipelining

Time

ld r1, (a)

ld r2, (b)

add r3, r1, r2

st (c), r3

A processor exploiting instruction-level parallelism (MIMD)

9/34

Data-level parallelism (70s and again 90s)

• Computers operate on data
• Data-parallel machines operate on many data items at once
• Implementations:

• Vector machines (super-computers of 70s)
• SIMD-extensions (PCs since 90s)
• GPGPUs (still developing)

Time

ldv r1:r4, (a:a+3)

ldv r5:r8, (b:b+3)

addv r9:r12, r1:r4, r5:r8

stv (c:c+3), r9:r12

4 × less

A processor with vector support (SIMD)
10/34

Flynn’s taxonomy

D
at

a
P

oo
l

Instruction Pool

PU

SISD

D
at

a
P

oo
l

Instruction Pool

PU PU

MISD

D
at

a
P

oo
l

Instruction Pool

PU

PU

PU

PU

SIMD

D
at

a
P

oo
l

Instruction Pool

PU

PU

PU

PU

PU

PU

PU

PU

MIMD

PU . . . Processing Unit

Image source: Wikipedia
11/34

Flynn’s taxonomy (2)

Single instruction Multiple instruction

Single data SISD MISD

Multiple data SIMD MIMD

SISD Single Instruction Single Data, a non-parallel computer

MISD Multiple Instruction Single Data, rather exotic model,
sometimes found in safety-critical systems (airplanes)

SIMD Single Instruction Multiple Data, a vector computer

MIMD Multiple Instruction Multiple Data, a computer exploiting
instruction-level parallelism (ILP).

Most modern computers (PCs) are a mix of the SIMD/MIMD model.

12/34

x
Beyond Instructions

Thread-level parallelism (60s)

• Also called task-level parallelism
• Execution of several threads (or programs) in parallel

• Each thread represents its own stream of instructions
(which may of course be executed in parallel themselves)

• Threads may have private data
• Threads may share data
• Threads may need to coordinate among each other

⇒ Requires much more involvement of the programmer
⇒ Interaction with programming languages and models
⇒ Heavily researched even today after 50 years!

14/34

Implementations

• Multiprocessor computers (60s)
A computer with multiple processors interconnected by a
bus or a simple network. The processor may or may not
access the same main memory.

• Multicore processors (2000s)
Several processors on a single chip. Processors on the
same chip usually share caches and the connection to
main memory.

• Clusters/grids/distributed computers (70s)
Several (often thousands) of computers interconnected by
a network. Each computer has its on memory.

15/34

Models of parallel programming

Shared-memory model x
Typically multicore or -processor computers where
all processors access the same main memory.
Threads coordinate by accessing shared data in
the shared main memory space.

Subject of CM2-4 & 7-8

Message-passing model x
Typically used for parallel systems using a network
(e.g., clusters, grids). Threads coordinate by
exchanging messages.

Subject of CM5-6

The programming model is somewhat implied by the computer
architecture.

16/34

Group Exercise: Why parallel programming?

Discuss in groups of 2-3:
• Why should we care about parallel programming?
• What does it bring us?
• Why should we teach it?
• What issues might be relevant with regard to teaching

parallel programming?

17/34

x
Dependencies

Amdahl’s Law

Has to be mentioned in every lecture on parallelism:

Speedup (S)
through paral-
lelization by n
is governed by the
amount of strictly
sequential code
(B):

S(n) =
1

B + 1
n (1− B)

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
p

ee
d

u
p

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Parallel Portion
50%
75%
90%
95%

19/34

Amdahl’s Law: What does it mean?

• Nice speedups are possible (that’s the good news)
• Throwing processors at a problem is not always helpful
• Even with a modest amount of sequential code the

speedup levels off quickly

⇒ Algorithms have to be designed to be parallel
⇒ Programs have to be written to be parallel
⇒ Programmers need to know how to do this

(and tools have to be available to help them)

⇒ You have to know what dependencies are

20/34

Amdahl’s Law: What does it mean?

• Nice speedups are possible (that’s the good news)
• Throwing processors at a problem is not always helpful
• Even with a modest amount of sequential code the

speedup levels off quickly

⇒ Algorithms have to be designed to be parallel
⇒ Programs have to be written to be parallel
⇒ Programmers need to know how to do this

(and tools have to be available to help them)

⇒ You have to know what dependencies are

20/34

Dependencies

A somewhat simplified definition:
Data Dependence: The result obtained from one computation

is needed in order to perform another computation.
Control Dependence: The outcome of one computation

determines whether another computation is
performed or not.

21/34

Example: Dependencies

int foo(int x)
{
int a = x >> 3;
int b = x & 7;
int c = a + b;
return c;

}

• c cannot be computed before a or b
⇒ true data dependence

• a and b are independent
⇒ no data dependence
⇒ they can be computed in parallel

22/34

Dependence Graphs

Representation of dependencies as a graph G = (V ,E)

V Nodes in the graph, representing a computation step
E Pairs of nodes (a,b) ∈ V × V

Example from before:
N = {x,a,b,c,ret}
V = {(x,a), (x,b), (a,c), (b,c), (c,ret)}

23/34

Drawing Dependence Graphs

int x

a = x >> 3 b = x & 7

c = a + b

return c

24/34

Dependencies and Parallelism

How do dependencies constrain parallelism?

the two operations without dependencies in parallel

25/34

Dependencies and Parallelism

How do dependencies constrain parallelism?

Execute the two operations without dependencies in parallel

25/34

Dependencies and Parallelism

How do dependencies constrain parallelism?

The next three operations can be executed in parallel

25/34

Dependencies and Parallelism

How do dependencies constrain parallelism?

The next operations can be executed (no parallelism)

25/34

Dependencies and Parallelism

How do dependencies constrain parallelism?

The next four operations can be executed in parallel

25/34

Forms of Data Dependencies

True Dependence: (aka read-after-write dep., or RAW,)
The value produced by the source a of the
dependence is used by the sink b (information
flows from a to b).

Anti Dependence: (aka write-after-read dep., or WAR,)
Arise from reusing names (e.g., variables or
memory locations), a value used by the source a
of the dependence is overwritten by the target b
(information does not flow from a to b).

Output Dependence: (aka write-after-write dep., or WAW,)
Also arise when names are reused, a value written
by the source of the dependence is overwritten by
the target.

26/34

Loop Carried Dependencies
Dependencies across loop iterations (for, while, do):

• Distance vectors:
Attached to dependencies, expressing the relation
between loop iterations reading and/or writing a value.

• Typically involve array accesses or pointers
• Example:

void foo(int *v, int n)
{
for(int i = 1; i < n; i++) {
a = v[i];
b = v[i - 1]; // from previous iteration!
v[i] = a + b;

}
}

27/34

Dependence Graph with Distance Vectors

a = v[i] b = v[i − 1]

v[i] = a + b

a
bv

Dependencies within a single iteration of the loop

28/34

Dependence Graph with Distance Vectors

a = v[i] b = v[i − 1]

v[i] = a + b +1

-1

Dependencies across loop iterations (focusing on v)

28/34

Dependence Graph with Distance Vectors

a = v[i] b = v[i − 1]

v[i] = a + b +1

-1

?
?

Dependencies you might imagine, but that are in fact not there

28/34

Dependence Graph with Distance Vectors

a = v[i] b = v[i − 1]

v[i] = a + b +1

-1

?
?

Dependencies you might imagine, but that are in fact not there

28/34

Group Exercise: Parallelism in Loops

Discuss in groups of 2-3:
• Can the loop from before be parallelized?
• Which forms of parallelism are available?

(SIMD, MIMD, Thread-Level?)

• Which role do the dependencies play?

a = v[i] b = v[i − 1]

v[i] = a + b +1

-1

29/34

Iteration Space Graphs

Represent dependencies between loop iterations:
• Points represent iterations
• Arrows dependencies between them
• Example from before:

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

30/34

Iteration Space Graphs of Nested Loops
Iteration space graphs also work in higher dimensions:

i=1
j=1

i=2

j=2

i=3

j=3

i=4

j=4

i=5

j=5

i=6

j=6

i=7

j=7

i=8

j=8

Lots of (data-level) parallelism immediately visible.

31/34

Iteration Space Graphs of Nested Loops
Iteration space graphs also work in higher dimensions:

i=1
j=1

i=2

j=2

i=3

j=3

i=4

j=4

i=5

j=5

i=6

j=6

i=7

j=7

i=8

j=8

Lots of (data-level) parallelism immediately visible.

31/34

Iteration Space Graphs of Nested Loops
Iteration space graphs also work in higher dimensions:

i=1
j=1

i=2

j=2

i=3

j=3

i=4

j=4

i=5

j=5

i=6

j=6

i=7

j=7

i=8

j=8

. . . also when we rotate the matrix.

31/34

Iteration Space Graphs of Nested Loops (2)

A matching program for the iteration space graph from before:

void foo(int v[10][10])
{
for(int i = 1; i < 9; i++) {
for(int j = 1; j < 8; j++) {
v[i+1][j+2] = v[i][j] + 1;

}
}

}

32/34

Summary

• Forms of parallelism:
• Pipelining / instruction-level parallelism (MIMD)
• Data-level parallelism (SIMD)
• Thead-level parallelism
• Most modern computers allow to exploit all three forms

• Amdahl’s Law:
Amount of sequential code limits speedup.

• Dependencies:
• Impose an ordering on the execution of operations
• Data-dependencies: RAW, WAR, WAW
• Control-dependencies
• Loop-carried dependencies and distance vectors
• Iteration space graphs

33/34

Todays TD

Explore data-level parallelism and its relation to dependencies:
• Reason about dependencies in programs (rather

interactive)
• Play with vectorization, i.e., the compiler extracts SIMD-like

data-parallelism in loops
• Some practical considerations with caches
• . . .

34/34

