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Dealing with concurrency
§  Locks:

ü Coarse-grained: inefficient
ü Fine-grained: deadlock-prone 
ü Do not compose

§  Non-blocking:
ü Difficult
ü Inefficient?
ü Still an active research area

§  Experts are needed!
ü (took 2 years to include a non-blocking queue to 

java.until.concurrency)
§  Needed: efficient and simple concurrency control
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Historical perspective 
§   Eswaran et al (CACM’76) Databases
§   Papadimitriou (JACM’79) Theory
§   Liskov/Sheifler (TOPLAS’83) Language 
§   Knight (ICFP’86) Architecture
§   Herlihy/Moss (ISCA’93)  Hardware
§   Shavit/Touitou (PODC’95) Software
§   Herlihy et al (PODC’03) Software – Dynamic
§  Intel, AMD, … (2012) – hardware TM
§  Now: Hybrid TM
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Transactional memory
Mark sequences of instructions as an atomic transaction:
atomic {

if (tail-head == MAX){
return full;
}
items[tail%MAX]=item; 
tail++;

}
return ok;

§  A transaction can be either committed or aborted
ü Committed transactions are appear sequential
ü Transactional memory (TM) resolves conflicts by aborting transactions  
ü Easy to use: think sequential and program concurrent
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Invariant:
every item consumed, 
no item consumed twice
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What do we expect from TM?
§  Safety:

ü  Committed transactions make sense 
§  Liveness/progress

ü A transaction eventually commits or aborts
ü Some transactions commit

§  Performance
ü Enough transactions commit
ü Underlying concurrency exploited
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Safety of TM
§  How to say that a TM history is correct

ü Equivalent to a legal sequential one

§  What is a TM history?
§  What is legal?
§  What is sequential?
§  What is equivalent
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Transactions and objects

§  Transactions invoke operations on shared 
objects

§  Every operation invocation is expected to 
return a reply 

§  Every transaction is expected either to 
abort or commit (disclaimer for liveness)
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Transactions and objects
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Transactions and shared objects
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Transactions

 Transactions are sequential units of 
computations

 Transactions are asynchronous 
   (pre-emption, page faults, crashes)
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Histories

§  The execution of a set of transactions on a 
set of objects is modeled by a history

§  A history is a total order of invocation and 
responses of operations, commit and abort 
events
ü H = (E,<)

The history depicts what the user sees
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Histories
§  Two transactions are sequential (in a history) if one 

invokes its first operation after the other one commits 
or aborts; they are concurrent otherwise

§  A history is sequential if it has only sequential 
transactions; it is concurrent otherwise 

§  Two histories are equivalent if they agree on the 
the set of transactions 
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Sequential history H2 ≈ H1
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A history is atomic if its restriction to 
committed transactions is serializable 

A history H of committed transactions is 
serializable if there is a history S(H) such that:

1.  S is equivalent to H
2.  S is sequential 
3.  in S, every read returns the last written 

value

Classical transactional safety [Pap79] 
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Atomic history?
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Sequential history?
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Sequential history?
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Atomic history?
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Sequential history
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Operation atomicity (linearizability)
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Transaction atomicity
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Serializability
§  A history H of committed transactions is 

serializable if there is a history S(H) such that:

1.  S is equivalent to H
2.  S is sequential 
3.  in S, every read returns the last written value
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Preserving real-time order

§  (T,T’) is in HRT if T terminates before T’ 
begins

§  S preserves the real-time order of H if
ü HRT is a subset of SRT

●  If T precedes T’ in H, T precedes T’ in S 
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Strict serializability
A history H of committed transactions is strictly 
serializable if there is a history S such that:
1.  S is equivalent to H
2.  S is sequential 
3.  S is legal (with respect to each object)
4.  S preserves the real-time order of H

©	2017	P.	Kuznetsov		



27 

Is it enough?

§  Committed transactions stricly serializable
§  Aborted transactions ignored

Is it safe?
(in a practical sense) 
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Simple algorithm  
(a la DSTM [Herlihy et al. 2003])

§  To write O, T tries to acquire ownership on O; 
T aborts T’ if some T’ holds ownership on O (using CAS)

§  To read O, T checks if all objects read remain valid 
(keep the value read)- else abort

§  Before committing, T checks if all objects read remain 
valid and changes its status to committed

Aggressive write, careful read
(obstruction-free writes, progressive progress)
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DSTM: write, read, tryCommit
write(x,v)
   (owner,ov,nv)=tvar[x].read()
   (stat,curr)=getValue(owner,ov,nv) 
   if stat=live and !status[owner].cas(live,aborted) then return abort
   if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then
         return ok
   else 
         return abort

             
read(x)
   (owner,ov,nv)=tvar[x]
   (stat,curr)=getValue(owner,ov,nv) 
   if stat!= live and valid() then
       rset = rset U {(x,[owner,ov,nv])}    
       return curr
   else 
         return abort

tryCommit()
   if valid() and status[myself].cas(live,committed) then
       return commit 
   else 
       return abort  

New value of x, if the owner committed, 
old value of x if aborted or live

Check if all previously 
read objects keep the 
same values

Grab the ownership on 
the object and set value v 
and old value curr

Set status to committed

try aborting the 
concurrent transaction
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DSTM: getValue() and valid()
getValue(owner,ov,nv)
   if status[owner]=committed
         return (committed,nv)
    else if status[owner]=aborted
         return (aborted,ov)
    else

return (live,ov)

valid()
    for each (x,[owner,ov,nv]) in rset do
        (owner’,ov’,nv’)= tvar[x].read()
        if (owner’,ov’,nv’)!=(owner,ov,nv) then
          return false
    return true  

©	2017	P.	Kuznetsov		

The value of x  is not 
known (a concurrent 
transaction is writing to it)

x has been  overwritten

Check every object in 
the “read set” 
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More efficient?

§  Why validating all the time?
ü “Apologizing vs. asking permission”

§  Only validate at commit time
ü Abort if did not succeed

Aggressive write, optimistic read

©	2017	P.	Kuznetsov		



32 

Example: run-time error
Initially: x=1, y=2
Invariant (sequential): 0<x<y

1/(y-x) is not supposed to give division-by-zero

But what if:

T1: 
x := x+1; 
y:= y+1;

T2: 
z := 1 / (y - x);
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Example: infinite loop
T1: 

x := 3; 
y:= 6

T2: 
a := y; 
b:= x; 

 repeat  
b:= b + 1; 

until a = b;
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Quiz 1: unsafe transactions and ABA

§  Sketch a simple strictly serializable TM 
implementation that exhibits histories with
ü Division-by-zero exception
ü Infinite loops
ü Hint: take a “simplified” version of DSTM and run it 

with T1, T2 described in slides 34 and 35
§  Is DSTM subject to the ABA problem?
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More refined safety needed

We need a theory that restricts all transactions: 
this is what critical sections give us

Every transaction sees a consistent state
§  sees?
§  consistent?

A la critical sections (locks)
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Histories
§  Let H be any history (made of commited, 

aborted and pending transactions)

§  Complete(H) is the history made of all 
transactions of H by completing pending ones 
with abort events 
ü And some of pending commits with 

commits
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Opacity [GK’08]

A history H of opaque if there is a history S such 
that:
1.  S is equivalent to (some history in)  

complete(H)
2.  S is sequential 
3.  S is legal wrt committed transactions
4.  S preserves the real-time order of H
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Opacity?
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Not legal
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Legal
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   Simple algorithm (DSTM)

§  Aggressive write (ownership) 

§  Careful read (validation)
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Visible Read  
(SXM; RSTM)

§  Write is mega killer: to write to an object O, 
a transaction aborts any live transaction 
which has read or written O

§  Visible but not so careful read: when a 
transaction reads an object, it says so
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Visible Read 

§  A visible read invalidates cache lines

§  For read-dominated workloads: a lot of traffic 
on the bus between processors

§  This would reduce the throughput
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Unavoidable (in some sense)
Theorem [GK’08]

In an opaque TM, reads are either visible or 
careful 

NB. Modulo the assumption of a single versions 
(at any moment, at most one value is stored for 
each object) and a weak progress property 
(progressiveness: commit if no read-write or 
write-write conflicts) 
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Intuition of the proof
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Read invisibility

§  The fact that the read is invisible means T1 
cannot inform T2, which would in turn abort 
T1 if it accessed similar objects (SXM, RSTM)

§  NB. Another way out is the use of multi-
versions (maintain multiple copies of each 
object)

§  The theorem does not hold for database 
(strictly serializable) transactions!
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Quiz 2: read visibility and validation

§  Why does not the “visibility-validation” 
theorem hold for multi-versioned TMS 
maintaining multiple versions of each object

§  Why does not the theorem hold for strictly 
serializable TMs?
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Liveness and progress of a TM   

What progress can we expect? 
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What is progress?

§  Operations eventually return?

§  Transactions eventually terminate?
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What is progress?

§  We want transactions to commit, including 
long ones:
ü rehashing the table, 
ü rebalancing the tree
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What is progress?

§  We cannot require a TM to commits 
transactions:
ü from a dead process, i.e., dead 

transactions
ü that infinitely loop, i.e., never trying to 

commit
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Progress? 

T2 
? 

O2 crash 

T1 
read->0 ? 

O2 O2 O2 O2 
read->0 read->0 read->0 

read->0 
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Progress

§  We can only expect progress for correct 
transactions 

§  How to define a correct transaction? 
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Correctness depends on the 
scheduler and the program

Program
R/W/TC/A Scheduler

TM
R/W/C&S/T&S/LL&SC/C/A
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History
§  A history (as seen by the user) does not 

say what the scheduler does and whether 
the program behaves correctly

§  We need a refined notion of history

§  Low-level history: a total order of 
invocation, response, try-commit, commit 
and abort events plus events of the 
implementation (steps)
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Correct transactions in  
low-level histories

§  A transaction T is correct if 
(a) try-commit is invoked after a finite number 

of invocation/reply events of T and 
(b) either T commits or T performs an infinite 
number of steps

(a)  depends on the program
(b)  depends on the scheduler 
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Ideal progress/liveness?  
Wait-freedom!

§  No correct transaction ever aborts 

§  NB. This is not a liveness property, should be 
combined with
ü Every operation executed by a correct 

transaction eventually returns

§  Can we achieve this? 
ü No: even if we allow a correct transaction to 

abort finite number of times
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Wait-free TM?

T1 
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Wait-freedom is impossible in an asynchronous 
system

 NB. This impossibility is fundamentally 
different from the impossibility of (wait-free) 
consensus [FLP85]: It holds for any underlying 
objects
 

Wait-free TM?
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Conditional progress/liveness?  
Obstruction-freedom 

A correct transaction that not encounter step 
contention (no interleaving steps of other 
transactions) commits

§  Obstruction-freedom: seems reasonable and 
indeed can be implemented
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OF DSTM

§  To write O, T tries to acquire ownership on O; 
T aborts T’ if some T’ holds ownership on O (using CAS)

§  To read O, T checks if all objects read remain valid 
(keep the value read)- else abort

§  Before committing, T checks if all objects read remain 
valid and changes its status to committed
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DSTM: write, read, tryCommit
write(x,v)
   (owner,ov,nv)=tvar[x].read()
    curr=getValue(owner,ov,nv) 
   if curr=live and !status[owner].cas(live,aborted) then return abort
   if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then
         return ok
   else 
         return abort

             
read(x)
   (owner,ov,nv)=tvar[x]
   curr=getValue(owner,ov,nv) 
   if curr=live and !status[owner].cas(live,aborted) then return abort
   if curr != live and valid() then
       rset = rset U {(x,[owner,ov,nv])}    
       return curr
   else 
         return abort

tryCommit()
   if valid() and status[myself].cas(live,committed) then
       return commit 
   else 
       return abort  

Read aborts the 
concurrent transaction
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DSTM uses CAS

§  CAS is the strongest synchronization 
primitive

 Is OFTM possible with R/W objects? 
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OF-TM

Program
R/W/TC/A Scheduler

TM

Low-level objects?
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Compare&Swap

Register

Queue Test&Set

…

Fetch&Add

Snapshot(1)

(2)

(∞)

(..)

Consensus number of OF-TM?
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FO-consensus

A process can decide or abort 
§   No two different values can be decided
§   A value decided was proposed by a non-

aborted process
 •  If abort is returned from propose(v) then 

there is step contention
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OF-TM <=> FO-consensus

§  From OF-TM to FO-consensus: propose() is 
performed within a transaction

§  From FO-consensus to OF-TM: slightly more 
tricky - as for DSTM but using a one shot 
object instead of CAS
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OF-consensus vs consensus

§  OF-consensus can implement consensus 
among exactly 2 processes                   

                          Algorithm
 P1 writes its value and keeps proposing until it 
decides a value
 P2 either decides or reads the value  
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The consensus number of 
OF-TM is 2

§  OF-TM cannot be implemented with R/W 
objects only

But OF-TM does not need CAS! 
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OF-TM vs. OF objects

§  Every OF object can be implemented with RW objects 

§  Where is the bug?

§  Abort really means the operation did not take place 
[AGHK’07] 
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TM Liveness 
§  Global progress (wait-freedom) is impossible
§  Conditional progress (obstruction-freedom) is 

not trivial
Boosting OF?
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Contention management

§  Conflict resolution delegated to a 
contention manager

§  Responsible solely for progress (liveness)
(different from a DB concurrency control)
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§  If a transaction T wants to write an object O 
owned by another transaction T’, T calls a 
contention manager 

§  The contention manager can decide to wait, 
retry or abort T’

Progress
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Contention managers
§  Aggressive: always aborts the victim

§  Backoff: wait for some time (exponential backoff) and 
then abort the victim

§  Karma: priority = cumulative number of shared objects 
accessed – work estimate. Abort the victim when number 
of retries exceeds difference in priorities. 

§  Polka: Karma + backoff waiting
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Greedy contention manager
§  State

ü Priority (based on start time)
ü Waiting flag (set while waiting)

§  Wait if other has
ü Higher priority AND not waiting

§  Abort other if
ü Lower priority OR waiting
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From OF to WF 

OF-TM CM

WF-TM
Every correct transaction eventually commits, 
(after finitely many aborts) 
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Quiz 3: TM progress and liveness

§  Why “no correct transaction ever aborts” is not 
a liveness property?

§  Prove correctness of the consensus algorithm 
using OF-consensus 
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Why do we care?  

 
What is it?  

- Modern computing is concurrent 
- TM promises simplicity and efficiency  

- Safety: opacity, … 
-Liveness: progressiveness, obstruction-
freedom,… 
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Concluding
§  TM does not replace locks: it hides them

ü Can also be non-blocking
§   TM only looks like db transactions and 

memory objects, but is quite different 
ü Safety, Liveness, Progress, … 

§  TM is another proof of the irrelevance of the 
notion of relevance … 
ü Like garbage collection in the old days 
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Take-aways

§  Transactions (software and hardware) 
conquer concurrent computing
ü Programmers are happy

§  Making TM efficient is in fact tricky, there are 
inherent costs and trade-offs
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