
1

Transactional Memory 
 
 
 

SE205,		2017	
	

© 2017 P. Kuznetsov & R. Guerraoui

2

Dealing with concurrency
§  Locks:

ü Coarse-grained: inefficient
ü Fine-grained: deadlock-prone
ü Do not compose

§  Non-blocking:
ü Difficult
ü Inefficient?
ü Still an active research area

§  Experts are needed!
ü (took 2 years to include a non-blocking queue to

java.until.concurrency)
§  Needed: efficient and simple concurrency control

©	2017	P.	Kuznetsov		

3

Historical perspective
§  Eswaran et al (CACM’76) Databases
§  Papadimitriou (JACM’79) Theory
§  Liskov/Sheifler (TOPLAS’83) Language
§  Knight (ICFP’86) Architecture
§  Herlihy/Moss (ISCA’93) Hardware
§  Shavit/Touitou (PODC’95) Software
§  Herlihy et al (PODC’03) Software – Dynamic
§  Intel, AMD, … (2012) – hardware TM
§  Now: Hybrid TM

4

Transactional memory
Mark sequences of instructions as an atomic transaction:
atomic {

if (tail-head == MAX){
return full;
}
items[tail%MAX]=item;
tail++;

}
return ok;

§  A transaction can be either committed or aborted
ü Committed transactions are appear sequential
ü Transactional memory (TM) resolves conflicts by aborting transactions
ü Easy to use: think sequential and program concurrent

© 2013 P. Kuznetsov

Invariant:
every item consumed,
no item consumed twice

5

What do we expect from TM?
§  Safety:

ü  Committed transactions make sense
§  Liveness/progress

ü A transaction eventually commits or aborts
ü Some transactions commit

§  Performance
ü Enough transactions commit
ü Underlying concurrency exploited

©	2017	P.	Kuznetsov		

6

Safety of TM
§  How to say that a TM history is correct

ü Equivalent to a legal sequential one

§  What is a TM history?
§  What is legal?
§  What is sequential?
§  What is equivalent

©	2017	P.	Kuznetsov		

7

Transactions and objects

§  Transactions invoke operations on shared
objects

§  Every operation invocation is expected to
return a reply

§  Every transaction is expected either to
abort or commit (disclaimer for liveness)

8

Transactions and objects

T1

T2

T3

operation

operation

operation

commit

abort

commit
operation

9

Transactions and shared objects

T1

T2

T3

operation

operation

operation

commit

abort

commit
operation

O1

O1

O2

O2

10

Transactions

 Transactions are sequential units of
computations

 Transactions are asynchronous
 (pre-emption, page faults, crashes)

11

Histories

§  The execution of a set of transactions on a
set of objects is modeled by a history

§  A history is a total order of invocation and
responses of operations, commit and abort
events
ü H = (E,<)

The history depicts what the user sees

12

History H1

T1

T2

read(0) write(1)

read(0)

commit

commit
write(1)

O2

O1 O2

O1

13

Histories
§  Two transactions are sequential (in a history) if one

invokes its first operation after the other one commits
or aborts; they are concurrent otherwise

§  A history is sequential if it has only sequential
transactions; it is concurrent otherwise

§  Two histories are equivalent if they agree on the
the set of transactions

14

Sequential history H2 ≈ H1

read(0) write(1)

read(0) write(1)

O2

O1 O2

O1

T1

T2

commit

commit

15

A history is atomic if its restriction to
committed transactions is serializable

A history H of committed transactions is
serializable if there is a history S(H) such that:

1.  S is equivalent to H
2.  S is sequential
3.  in S, every read returns the last written

value

Classical transactional safety [Pap79]

16

Atomic history?

T1

T2

read->0 write(1)

read->0

commit

commit
write(1)

O2

O1 O2

O1

17

Sequential history?

T1

T2

read->0 write(1)

read->0 write(1)

O2

O1 O2

O1

18

Sequential history?

T1

T2

read->0 write(1)

read->0 write(1)

O2

O1 O2

O1

19

Atomic history?

T1

T2

read->0 write(0)

read->0

commit

commit
write(1)

O2

O1 O2

O1

20

Sequential history

read->0 write(0)

read->0 write(1)

O2

O1 O2

O1

T1

T2

21

Operation atomicity (linearizability)

T1

T2

T3

operation

operation

operation

22

Transaction atomicity

T1

T3

operation operation

operation

commit

commit
operation

O1

O1 O2

O2

23

Serializability
§  A history H of committed transactions is

serializable if there is a history S(H) such that:

1.  S is equivalent to H
2.  S is sequential
3.  in S, every read returns the last written value

©	2017	P.	Kuznetsov		

24

write(1)

read(0)

O1

O1

commit

commit

T1

T2

Real-time

25

Preserving real-time order

§  (T,T’) is in HRT if T terminates before T’
begins

§  S preserves the real-time order of H if
ü HRT is a subset of SRT

●  If T precedes T’ in H, T precedes T’ in S

26

Strict serializability
A history H of committed transactions is strictly
serializable if there is a history S such that:
1.  S is equivalent to H
2.  S is sequential
3.  S is legal (with respect to each object)
4.  S preserves the real-time order of H

©	2017	P.	Kuznetsov		

27

Is it enough?

§  Committed transactions stricly serializable
§  Aborted transactions ignored

Is it safe?
(in a practical sense)

©	2017	P.	Kuznetsov		

28

Simple algorithm  
(a la DSTM [Herlihy et al. 2003])

§  To write O, T tries to acquire ownership on O;
T aborts T’ if some T’ holds ownership on O (using CAS)

§  To read O, T checks if all objects read remain valid
(keep the value read)- else abort

§  Before committing, T checks if all objects read remain
valid and changes its status to committed

Aggressive write, careful read
(obstruction-free writes, progressive progress)

29

DSTM: write, read, tryCommit
write(x,v)
 (owner,ov,nv)=tvar[x].read()
 (stat,curr)=getValue(owner,ov,nv)
 if stat=live and !status[owner].cas(live,aborted) then return abort
 if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then
 return ok
 else
 return abort

read(x)
 (owner,ov,nv)=tvar[x]
 (stat,curr)=getValue(owner,ov,nv)
 if stat!= live and valid() then
 rset = rset U {(x,[owner,ov,nv])}
 return curr
 else
 return abort

tryCommit()
 if valid() and status[myself].cas(live,committed) then
 return commit
 else
 return abort

New value of x, if the owner committed,
old value of x if aborted or live

Check if all previously
read objects keep the
same values

Grab the ownership on
the object and set value v
and old value curr

Set status to committed

try aborting the
concurrent transaction

30

DSTM: getValue() and valid()
getValue(owner,ov,nv)
 if status[owner]=committed
 return (committed,nv)
 else if status[owner]=aborted
 return (aborted,ov)
 else

return (live,ov)

valid()
 for each (x,[owner,ov,nv]) in rset do
 (owner’,ov’,nv’)= tvar[x].read()
 if (owner’,ov’,nv’)!=(owner,ov,nv) then
 return false
 return true

©	2017	P.	Kuznetsov		

The value of x is not
known (a concurrent
transaction is writing to it)

x has been overwritten

Check every object in
the “read set”

31

More efficient?

§  Why validating all the time?
ü “Apologizing vs. asking permission”

§  Only validate at commit time
ü Abort if did not succeed

Aggressive write, optimistic read

©	2017	P.	Kuznetsov		

32

Example: run-time error
Initially: x=1, y=2
Invariant (sequential): 0<x<y

1/(y-x) is not supposed to give division-by-zero

But what if:

T1:
x := x+1;
y:= y+1;

T2:
z := 1 / (y - x);

©	2017	P.	Kuznetsov		

33

Example: infinite loop
T1:

x := 3;
y:= 6

T2:
a := y;
b:= x;

 repeat
b:= b + 1;

until a = b;

©	2017	P.	Kuznetsov		

34

Quiz 1: unsafe transactions and ABA

§  Sketch a simple strictly serializable TM
implementation that exhibits histories with
ü Division-by-zero exception
ü Infinite loops
ü Hint: take a “simplified” version of DSTM and run it

with T1, T2 described in slides 34 and 35
§  Is DSTM subject to the ABA problem?

©	2017	P.	Kuznetsov		

35

More refined safety needed

We need a theory that restricts all transactions:
this is what critical sections give us

Every transaction sees a consistent state
§  sees?
§  consistent?

A la critical sections (locks)

©	2017	P.	Kuznetsov		

36

Histories
§  Let H be any history (made of commited,

aborted and pending transactions)

§  Complete(H) is the history made of all
transactions of H by completing pending ones
with abort events
ü And some of pending commits with

commits

37

Opacity [GK’08]

A history H of opaque if there is a history S such
that:
1.  S is equivalent to (some history in)

complete(H)
2.  S is sequential
3.  S is legal wrt committed transactions
4.  S preserves the real-time order of H

©	2017	P.	Kuznetsov		

38

Opacity?

T1

T2

read->0

write(1)

commit

abort
read->0

O2

O2

O1

write(1)
O1

39

Not legal

T1

T2

read->0

write(1)

commit

read->0

O2

O2

O1

write(1)
O1

40

Legal

T1

T2
write(1)

commit

O2

O2

O1

write(1)
O1

read->0

read->0

41

 Simple algorithm (DSTM)

§  Aggressive write (ownership)

§  Careful read (validation)

42

Visible Read  
(SXM; RSTM)

§  Write is mega killer: to write to an object O,
a transaction aborts any live transaction
which has read or written O

§  Visible but not so careful read: when a
transaction reads an object, it says so

43

Visible Read

§  A visible read invalidates cache lines

§  For read-dominated workloads: a lot of traffic
on the bus between processors

§  This would reduce the throughput

44

Unavoidable (in some sense)
Theorem [GK’08]

In an opaque TM, reads are either visible or
careful

NB. Modulo the assumption of a single versions
(at any moment, at most one value is stored for
each object) and a weak progress property
(progressiveness: commit if no read-write or
write-write conflicts)

©	2017	P.	Kuznetsov		

45

Intuition of the proof

T1

T2

read()

write()
commit

I1,I2,..,Im

O1,O2,..,On
read()
Ik

46

Read invisibility

§  The fact that the read is invisible means T1
cannot inform T2, which would in turn abort
T1 if it accessed similar objects (SXM, RSTM)

§  NB. Another way out is the use of multi-
versions (maintain multiple copies of each
object)

§  The theorem does not hold for database
(strictly serializable) transactions!

47

Quiz 2: read visibility and validation

§  Why does not the “visibility-validation”
theorem hold for multi-versioned TMS
maintaining multiple versions of each object

§  Why does not the theorem hold for strictly
serializable TMs?

©	2017	P.	Kuznetsov		

48

Liveness and progress of a TM

What progress can we expect?

49

What is progress?

§  Operations eventually return?

§  Transactions eventually terminate?

50

What is progress?

§  We want transactions to commit, including
long ones:
ü rehashing the table,
ü rebalancing the tree

51

What is progress?

§  We cannot require a TM to commits
transactions:
ü from a dead process, i.e., dead

transactions
ü that infinitely loop, i.e., never trying to

commit

52

Progress?

T2
?

O2 crash

T1
read->0 ?

O2 O2 O2 O2
read->0 read->0 read->0

read->0

53

Progress

§  We can only expect progress for correct
transactions

§  How to define a correct transaction?

54

Correctness depends on the
scheduler and the program

Program
R/W/TC/A Scheduler

TM
R/W/C&S/T&S/LL&SC/C/A

55

History
§  A history (as seen by the user) does not

say what the scheduler does and whether
the program behaves correctly

§  We need a refined notion of history

§  Low-level history: a total order of
invocation, response, try-commit, commit
and abort events plus events of the
implementation (steps)

56

Correct transactions in  
low-level histories

§  A transaction T is correct if
(a) try-commit is invoked after a finite number

of invocation/reply events of T and
(b) either T commits or T performs an infinite
number of steps

(a)  depends on the program
(b)  depends on the scheduler

57

Ideal progress/liveness?  
Wait-freedom!

§  No correct transaction ever aborts

§  NB. This is not a liveness property, should be
combined with
ü Every operation executed by a correct

transaction eventually returns

§  Can we achieve this?
ü No: even if we allow a correct transaction to

abort finite number of times

58

Wait-free TM?

T1

T2

read()

write()

commit

O1

O1
write()

O2

read()

O2

abort

59

Wait-freedom is impossible in an asynchronous
system

 NB. This impossibility is fundamentally
different from the impossibility of (wait-free)
consensus [FLP85]: It holds for any underlying
objects

Wait-free TM?

60

Conditional progress/liveness?  
Obstruction-freedom

A correct transaction that not encounter step
contention (no interleaving steps of other
transactions) commits

§  Obstruction-freedom: seems reasonable and
indeed can be implemented

61

OF DSTM

§  To write O, T tries to acquire ownership on O;
T aborts T’ if some T’ holds ownership on O (using CAS)

§  To read O, T checks if all objects read remain valid
(keep the value read)- else abort

§  Before committing, T checks if all objects read remain
valid and changes its status to committed

62

DSTM: write, read, tryCommit
write(x,v)
 (owner,ov,nv)=tvar[x].read()
 curr=getValue(owner,ov,nv)
 if curr=live and !status[owner].cas(live,aborted) then return abort
 if tvar[x].cas([owner,ov,nv],[myself,curr,v]) then
 return ok
 else
 return abort

read(x)
 (owner,ov,nv)=tvar[x]
 curr=getValue(owner,ov,nv)
 if curr=live and !status[owner].cas(live,aborted) then return abort
 if curr != live and valid() then
 rset = rset U {(x,[owner,ov,nv])}
 return curr
 else
 return abort

tryCommit()
 if valid() and status[myself].cas(live,committed) then
 return commit
 else
 return abort

Read aborts the
concurrent transaction

63

DSTM uses CAS

§  CAS is the strongest synchronization
primitive

 Is OFTM possible with R/W objects?

64

OF-TM

Program
R/W/TC/A Scheduler

TM

Low-level objects?

65

Compare&Swap

Register

Queue Test&Set

…

Fetch&Add

Snapshot(1)

(2)

(∞)

(..)

Consensus number of OF-TM?

66

FO-consensus

A process can decide or abort
§  No two different values can be decided
§  A value decided was proposed by a non-

aborted process
 •  If abort is returned from propose(v) then

there is step contention

67

OF-TM <=> FO-consensus

§  From OF-TM to FO-consensus: propose() is
performed within a transaction

§  From FO-consensus to OF-TM: slightly more
tricky - as for DSTM but using a one shot
object instead of CAS

68

OF-consensus vs consensus

§  OF-consensus can implement consensus
among exactly 2 processes

  Algorithm
 P1 writes its value and keeps proposing until it
decides a value
 P2 either decides or reads the value

69

The consensus number of
OF-TM is 2

§  OF-TM cannot be implemented with R/W
objects only

But OF-TM does not need CAS!

70

OF-TM vs. OF objects

§  Every OF object can be implemented with RW objects

§  Where is the bug?

§  Abort really means the operation did not take place
[AGHK’07]

71

TM Liveness
§  Global progress (wait-freedom) is impossible
§  Conditional progress (obstruction-freedom) is

not trivial
Boosting OF?

©	2017	P.	Kuznetsov		

OF TM

CM

72

Contention management

§  Conflict resolution delegated to a
contention manager

§  Responsible solely for progress (liveness)
(different from a DB concurrency control)

73

§  If a transaction T wants to write an object O
owned by another transaction T’, T calls a
contention manager

§  The contention manager can decide to wait,
retry or abort T’

Progress

74

Contention managers
§  Aggressive: always aborts the victim

§  Backoff: wait for some time (exponential backoff) and
then abort the victim

§  Karma: priority = cumulative number of shared objects
accessed – work estimate. Abort the victim when number
of retries exceeds difference in priorities.

§  Polka: Karma + backoff waiting

75

Greedy contention manager
§  State

ü Priority (based on start time)
ü Waiting flag (set while waiting)

§  Wait if other has
ü Higher priority AND not waiting

§  Abort other if
ü Lower priority OR waiting

76

From OF to WF

OF-TM CM

WF-TM
Every correct transaction eventually commits,
(after finitely many aborts)

77

Quiz 3: TM progress and liveness

§  Why “no correct transaction ever aborts” is not
a liveness property?

§  Prove correctness of the consensus algorithm
using OF-consensus

©	2017	P.	Kuznetsov		

78

Why do we care?

 
What is it?

- Modern computing is concurrent 
- TM promises simplicity and efficiency

- Safety: opacity, … 
-Liveness: progressiveness, obstruction-
freedom,…

79

Concluding
§  TM does not replace locks: it hides them

ü Can also be non-blocking
§  TM only looks like db transactions and

memory objects, but is quite different
ü Safety, Liveness, Progress, …

§  TM is another proof of the irrelevance of the
notion of relevance …
ü Like garbage collection in the old days

©	2017	P.	Kuznetsov		

80

Take-aways

§  Transactions (software and hardware)
conquer concurrent computing
ü Programmers are happy

§  Making TM efficient is in fact tricky, there are
inherent costs and trade-offs

©	2017	P.	Kuznetsov		

