
©	2017	P.	Kuznetsov	
	

 
Concurrent List-Based Sets 

fine-grained, optimistic and lazy synchronization

SE205, P1, 2017

2

Implementing a scalable
concurrent data structure?

§  What is a concurrent data structure?
ü Sequential type
ü Wait-free
ü Linearizable

§  What is scalable?
ü Throughput: the number of complete operations per

time unit
ü Workload: concurrent operations applied
ü Throughput scales with the growing workload (ideally)

§  Typically, better concurrency translates to better
performance
ü The “number” of accepted concurrent schedules

©	2017	P.	Kuznetsov	
	

3

Example: set type
A set abstraction stores a set of integers

(no duplicates) and exports operations:

§  insert(x) – adds x to the set and returns
true if and only if x is not in the set

§  remove(x) – removes x from the set and
returns true if and only if x is in the set

§  contains(x) – returns true if and only if x
is in the set

©	2017	P.	Kuznetsov	
	

4

Sequential list-based set
Implementing a set using a sorted linked list:

§  To locate x, search starting from the head curr points to
the first node storing x’≥x, prev points to its predecessor

§  To remove x (if x’=x), point prev.next to curr.next
§  To insert x (if x’>x), set prev.next to the new node

storing x and pointing to curr

… 2 5 7 9 H T

©	2017	P.	Kuznetsov	
	

5

Linearizable histories

p1	

p2	

p3	

	insert(3)																							ok	

contains(1)																														true	

	insert(1)										ok	

	remove(1)																		ok	

The history is equivalent to a legal sequential
history on a set (real-time order preserved)

©	2017	P.	Kuznetsov	
	

6

Linked-list for Set: sequential implementation

©	2017	P.	Kuznetsov	
	

/* The node of an integer list. At creation, default pointer
is null */

public class Node{
 Node(int item){key=item;next=null;}
 public int key;
 public Node next;}

public class SetList{

 private Node head;

 public SetList(){
head = new Node(Integer.MIN_VALUE);

 head.next = new Node(Integer.MAX_VALUE);
 }

7 ©	2017	P.	Kuznetsov	
	

 public boolean insert(int item){
 Node pred=head;

 Node curr=head.next;
 while (curr.key < item){

 pred = curr;
 curr = pred.next;}

 if (curr.key==item)
{return false;}

 else{
Node node = new
Node(item);
node.next=curr;

 pred.next=node;
 return true;

 } }

public boolean contains(int item){
 Node pred=head;

 Node curr=head.next;
 while (curr.key < item){

 pred = curr;
 curr = pred.next;}

 if (curr.key==item)
{return true;}

 else {return false;}}

Linked-list for Set: sequential implementation	

public boolean remove(int item){
 Node pred=head;

 Node curr=head.next;
 while (curr.key < item){

 pred = curr;
 curr = pred.next;}

 if (curr.key==item)
{pred.next=curr.next;

 return true;}
 else {return false;}}

8

As is?

The extension with contains(3)
is not linearizable!

2

3

H T

Insert(3)	

Insert(5)	

5

The update is lost!

©	2017	P.	Kuznetsov	
	

9

p1	

p2	

p3	

	insert(3)																							ok	

Contains(3)									false	

	insert(2)										ok	

	insert(5)																		ok	

?

Need to protect the list elements:
locks, transactional memory…

©	2017	P.	Kuznetsov	
	

10

Concurrent reasoning?

§  How to show that an implementation is correct
(linearizable)?

§  Invariants: true initially, no transition can
render it false
ü E.g., the object representation “makes sense”

§  (Sorted) list-based sets:
ü  head and tail are sentinels
ü  nodes are sorted and keys are unique
ü (the structure can be produced sequentially)

©	2017	P.	Kuznetsov	
	

11

Progress guarantees?
§  Locks are used to protect list elements

(assuming cooperation):
ü Deadlock-freedom: at least one process makes

progress (completes all its operations)
ü Starvation-freedom: every process makes

progress
§  Nonblocking approaches:

ü Wait-free: every operation completes in a finite
number of steps

ü Lock-free: some operation completes in a finite
number of steps

©	2017	P.	Kuznetsov	
	

12

Coarse grained solution

©	2017	P.	Kuznetsov	
	

public class CoarseList{

 private Node head;
 private Lock lock = new ReentrantLock();

 public boolean insert(int item){
 lock.lock();
 Node pred=head;
 try {
 Node curr=head.next;

 while (curr.key < item){
 pred = curr;
 curr = pred.next;
 }

 if (curr.key==item){return false;}
 Node node = new Node(item);

 node.next=curr;
 pred.next=node;
 return true;

 } finally{
 lock.unlock();

 }
 }

§  Same progress
guarantees as lock
ü ReentrantLock –

starvation-free
§  Good for low

contention
§  Sub-optimal for

moderate to high
contention:
operations run
sequentially

13

Locking schemes for a linked-list

… Coarse-grained	locking	

… 2-phase	locking	

… Hand-over-hand	locking	

©	2017	P.	Kuznetsov	
	

14

Fine-grained solution: hand-over-hand

©	2017	P.	Kuznetsov	
	

public boolean insert(int item){
 head.lock();
 Node pred=head;
 try {
 Node curr=head.next;
 curr.lock();
 try {

 while (curr.key < item){
 pred.unlock();

 pred = curr;
 curr = pred.next;

 curr.lock()
}

 if (curr.key==item){
return false;}

 Node node = new Node(item);
 node.next=curr;

 pred.next=node;
 return true;

 } finally{
 curr.unlock();

 }
 finally{

 pred.unlock();
 }
}

public boolean remove(int item){
 head.lock();
 try {
 Node pred=head;
 Node curr=pred.next;

 curr.lock();
 try {

 while (curr.key < item){
 pred.unlock();

 pred = curr;
 curr = pred.next;

 curr.lock()
}

 if (curr.key==item){
pred.next=curr.next;
return true;}

 return false;
 } finally{
 curr.unlock();

 }
 finally{

 pred.unlock();
 }
}

15

Hand-over-hand: concurrency limitations

©	2017	P.	Kuznetsov	
	

public boolean contains(int item){
 head.lock();

 Node pred=head;
 try {
 Node curr=head.next;
 curr.lock();
 try {
 while (curr.key < item){

 pred.unlock();
pred = curr;

 curr = pred.next;
curr.lock()

 }
return (curr.key==item);

 } finally{
 curr.unlock();

 }
 finally{

 pred.unlock();
 }
}

§  More concurrency:
ü An operation working on a

“high” node does not
obstruct ones working on
“low” nodes

16

Hand-over-hand: linearization
§  Every complete operation is linearized within the critical

section (between locks and unlocks)
§  No update concerning pred or any subsequent node

concurrently occurs: pred remains reachable as long as it
is locked

©	2017	P.	Kuznetsov		

p1	

p2	

p3	

	insert(2)																																								true	
update

	insert(3)					true	

	insert(5)																												true	

	insert(4)						true	

traverse

	insert(1)						true	

	remove(1)																	true	

17

Hand-over-hand: progress
§  Starvation-freedom (assuming starvation-free locks)

ü Operations acquire locks in the order of growing items: no
deadlock possible

ü Every lock acquisition eventually completes
ü Traverse for item eventually reaches a node with item’≥
item

ü Why?

§  But! Operations concerning disjoint nodes may obstruct
each other
ü E.g. insert(2) obstructs insert(5), when applied to {3,4}

§  Optimistic algorithm?
ü No locks on the traverse path

©	2017	P.	Kuznetsov	
	

18

Quiz 1: hand-over-hand

§  Check if contains requires locking
ü What if contains traversed the list without lock

acquisition?
§  What if traverse (in remove, insert) checks the

value in curr before locking it (only holds lock on
pred when traverse terminates)?

§  Can we just use one lock at a time?
§  Prove starvation-freedom (assuming starvation-

free locks)
ü Can an operation be blocked (delayed forever) by

infinitely many concurrent inserts?

©	2017	P.	Kuznetsov		

19

Optimistic:  
wait-free traversal plus validation

©	2017	P.	Kuznetsov	
	

private boolean validate(Node pred, Node
curr) {

 Node node=head;
 while (node.key <= pred.key){
 if (node==pred){

 return pred.next==curr;}
 node=node.next;
 }
 return false;

 }

public boolean remove(int item)
 while (true){
 Node pred=head;
 Node curr=pred.next;

 while (curr.key<item){
 pred=curr;

 curr=curr.next;
 }

 pred.lock(); curr.lock();
 try {
 if (validate(pred,curr)){
 if (curr.key==item) {

pred.next=curr.next;
 return true;
}

 return false; }
 } finally{
 pred.unlock();
 curr.unlock();

 }
}

Validation necessary for
updates?

20

Optimistic:  
wait-free traversal plus validation

©	2017	P.	Kuznetsov	
	

public boolean contains(int item) {
while (true){

 Node pred=head;
 Node curr=pred.next;

 while (curr.key<item){
 pred=curr;

 curr=curr.next;
 }

 pred.lock(); curr.lock();
 try {
 if (validate(pred,curr)){
 return (curr.key==item);

}
 } finally{

 pred.unlock();
 curr.unlock();}

 }
}

}

public boolean insert(int item){
 while (true){
 Node pred=head;
 Node curr=pred.next;

 while (curr.key<item){
 pred=curr;

 curr=curr.next;
 }

 pred.lock(); curr.lock();
 try {
 if (validate(pred,curr)){
 if (curr.key==item) {

 return false;
}

 Node node = new Node(item);
 node.next=curr;

 pred.next=node;
 return true; }
 } finally{
 pred.unlock();
 curr.unlock();}

 }
}

§  contains grabs locks
§  updates re-traverse even if no

contention.

21

Optimistic: linearization
§  Every complete operation is linearized within the

critical section (between locks and unlocks)
§  No update concerning pred and curr can take place

concurrently
§  And validation in the CS ensures that pred->curr are

still reachable (possibly via a new path)

©	2017	P.	Kuznetsov		

p1	

p2	

p3	

	insert(3)																																								true	
lock&validation

	insert(2)					true	

	insert(6)																												true	

	insert(4)				true	

traverse

	insert(1)						true	

	remove(1)				true		insert(5)				true	

22

Quiz 2: optimistic

§  Show that validation is necessary for updates
ü Hint: consider an algorithm without validation and

show that an update can get lost because of a
series of concurrent removes

§  Is validation necessary for contains?
§  Show that the algorithm is not starvation-free

(even if all locks are)

©	2017	P.	Kuznetsov		

23

Lazy synchronization:  
logical removals and wait-free contains

©	2017	P.	Kuznetsov	
	

private boolean validate(Node pred, Node
curr) {

 return !pred.marked && !curr.marked &&

pred.next==curr;
}

public boolean remove(int item)
 while (true){
 Node pred=head;
 Node curr=pred.next;

 while (curr.key<item){
 pred=curr;

 curr=curr.next;
 }

 pred.lock();
 try {
 curr.lock();
 try {
 if (validate(pred,curr)){
 if (curr.key!=item){

return false;}
 curr.marked=true;
 pred.next=curr.next;
 return true; }
 } finally{
 curr.unlock(); }

 } finally{
 pred.unlock();}

 }
}

§  remove first marks the node
for deletion and then
physically removes it

§  contains returns true iff the
node is reachable and not
marked

§  A node is in the set iff it is an
unmarked reachable node

24

Lazy synchronization:  
wait-free contains

©	2017	P.	Kuznetsov	
	

public boolean contains(int item){

 Node curr=head;
while (curr.key<item){
 curr=curr.next;
}
return (curr.key==item)&& !curr.marked ;

}

public boolean insert(int item){
 while (true){
 Node pred=head;
 Node curr=pred.next;

 while (curr.key<item){
 pred=curr;

 curr=curr.next;
 }

 pred.lock();
 try {
 curr.lock();
 try {
 if (validate(pred,curr)){
 if (curr.key==item) {

 return false;
}

 Node node = new Node(item);
 node.next=curr;

 pred.next=node;
 return true; }

 } finally{
 curr.unlock(); }

 } finally{
 pred.unlock();}

 }
}

25

Quiz 3: lazy
§  Show that both conditions in the validation check are

necessary
Hint: consider concurrent removes on two consecutive nodes, or a
remove concurrent to an insert of a preceding node

§  Is the check !curr.marked necessary in contains?

§  Determine linearization points for all operations:
ü  insert(successful or not)
ü  remove (successful or not)
ü  contains (successful or not)
Hint: for an unsuccessful contains(x), linearization point may vary
depending on the presence of a concurrent insert(x)

©	2017	P.	Kuznetsov		

26

From locks to nonblocking

§  Lazy [Heller et al.]: best of the class?
ü contains wait-free
ü add and remove are only deadlock-free

§  Can we make all methods lock-free?
ü Wait-free for contains

§  Replace read and update of curr.next with CAS?
ü Not that easy: may need to atomically update the

reference and check the logical deletion mark
ü AtomicMarkableReference in java, bit stealing in C++
ü Maintain reference to the next item and logical

deletion mark “together”

©	2017	P.	Kuznetsov		

27

Why AMR or bit stealing?

•  remove(2) and insert(5) do
not conflict on “next” fields

•  insert(5) is lost!
•  non-coupled logical

deletion checks do not
prevent “lost updates”

2 H T

remove(2)	

insert(5)	

5

©	2017	P.	Kuznetsov	
	

28

Nonblocking synchronization [Harris 2003]:  
lock-free updates and wait-free contains

©	2017	P.	Kuznetsov	
	

public boolean remove(int item)
…

while (true){
 \\ traverse with physical

\\ removal of marked nodes
\\ determine pred and curr

if (curr.key!=item)){
return false;}

Node succ=curr.next.getReference();
 snip =

curr.next.compareAndSet(succ,succ,
false,true);

 if (!snip) continue;
 pred.next.compareAndSet(curr,succ,

false,false);
 return true;
}

}
}

§  Even lazier: remove does not
unlink the node, only marks it
for deletion

§  Updates unlink nodes marked
for deletion by previous
removes

§  Remove first tests if curr.next
stores the expected reference
and, if yes, logically marks
curr (restart if no)

§  Then it uses CAS on two
fields: succeeds only if the
reference and mark do not
change

§  [Herlihy and Shavit, Chapter 9.8]

29

Conventional synchronization

§  Locks are hard to use efficiently
§  Nonblocking implementations with CAS have

inherent (hardware) limitations
§  Multiple operations cannot be easily

composed

What can we do about it?

©	2017	P.	Kuznetsov	
	

30

Transactions?

©	2017	P.	Kuznetsov	
	

public class TxnList{

 private Node head;

 public boolean add(int item){
 atomic {
 Node pred=head;

 Node curr=head.next;
 while (curr.key < item){

 pred = curr;
 curr = pred.next;
 }

 if (curr.key==item){return false;}
 Node node = new Node(item);

 node.next=curr;
 pred.next=node;
 return true;

 }
 }

31

Transactional memory

©	2017	P.	Kuznetsov	
	

§  A transaction atomic {…} commits or aborts
§  Committed transactions serialize:

ü Constitute a sequential execution
§  Aborted transactions “never happened”

ü Can affect other aborted ones?
§  A correct sequential program implies a correct concurrent

one
§  Composition is easy:

atomic{
x=q0.deq();
q1.enq(x);

}

32

So what is better?
It depends on:

§  the data structure (some are more
concurrency-friendly than others, cf. queues
vs. lists)

§  workload (high update-rate vs. read-
dominated)

§  Programming skills
§  TM inherent costs

©	2017	P.	Kuznetsov	
	

33

§  To practice: list-based sets in java
ü What is better on what workload?
ü SynchroBench:

https://github.com/gramoli/synchrobench
§  Check a practical assignment (TP) on wiki

ü Compare Coarse-grained, HOH, Optimistic, Lazy
ü Various update ratios
ü Various scales
ü Various list sizes

©	2017	P.	Kuznetsov		

