
SE205: Solutions for Quiz 1

1 2-process Peterson’s algorithm

Suppose that p0 executes the first two lines of its algorithm in the reverse order:

1. turn = 1;

2. flag[0] = true;

Then the following execution scenario is possible:

read flag[0] = false

p0

p1

turn = 1

flag[1] = true turn = 0

both p0 and p1 are in CS

flag[0] = true

read turn = 0

(Note that we do not care about the order in which the first two lines are executed by p1.)
Here p0 sets turn to 1, then p1 sets turn to 0, flag[0] to true (the order in which these two

operations are performed does not matter) reads false in flag[0] and proceeds to the critical
section. Then p0 reads 0 in turn and also proceeds to the critical section—a contradiction.

2 N-process Peterson’s algorithm

Algorithm 1 N -process Peterson’s algorithm
1: Shared variables:
2: level[0, . . . , N − 1] = {−1}
3: waiting[0, . . . , N − 2] = {−1}

4: Trying section: code for process pi:
5: for m from 0 to N − 2 do
6: level[i] = m;
7: waiting[m] = i;
8: while(waiting[m] == i && (∃ k 6= i : level[k] >= m));

9: Critical section:
10: . . .
11: Exit section:
12: level[i] = −1;

1

Mutual exclusion. To prove that Algorithm 1 ensures the property of mutual exclusion,
suppose, by contradiction, that it has an execution in which two processes are in their critical
sections at some time t.

We say that a process pi reached level ` (` = 0, . . . , N − 1) if it is in the critical section or
level[i] stores ` or a higher value. Thus, by our assumption, two processes reached level N − 1
at the same time.

Intuitively, a process that reached level ` is in the critical section or in the waiting phase
` or higher. By the algorithm, a process pi executing its `-th waiting phase should wait for
every process that reached level ` to complete their critical sections, unless there is another
process that wrote to waiting[`] after pi.

Suppose, inductively, that for some ` = N − 1 down to 1, a set S of N − ` + 1 processes
reached level ` or higher at some time t`. (In the base case, ` = N − 1 and we have a set of 2
such processes.)

By the algorithm, before time t`, every process pi ∈ S sets level[i] to ` − 1 and writes i
in waiting[` − 1]. Without loss of generality, assume that pi is the last process in S to update
waiting[` − 1] before t`, and let t′ be the time when this happens. Hence, at time t′, for every
other process in pj ∈ S, level[j] stores ` − 1 or a higher value. Indeed, if at time t′, for some
process pj ∈ S, level[j] stores a value less than `− 1, then to reach level ` by time t`, pj must
write j to waiting[`− 1] at some time between t′ and t`, contradicting the assumption that pi
is the last process in S to write to waiting[`− 1] before t`.

Since |S| = N − ` + 1 and ` ≤ N − 1, there is at least one process in S besides pi. Thus,
to reach level `, between t′ and t`, pi must have read a value other than i in waiting[` − 1]:
otherwise, pi would have to wait until all other processes in S complete their critical sections
and set their level variables to −1. Thus, at some time t`−1 between t′ and t`, a process pk /∈ S
has written k in waiting[`−1]. Thus, at time t`−1, at least |S|+1 = N − `+2 processes reached
level `− 1.

pi

S

t`

waiting[`− 1] = k

t`−1
waiting[`− 1] = i

t′

S reached level `S reached level `− 1 S ∪ {pk} reached level `− 1

pk

By induction, we derive that at some time t0, at least N +1 process must have reached level
0, contradicting the fact that we have exactly N processes.

Starvation-freedom. Now we prove that Algorithm 1 ensures the property of starvation-
freedom, i.e., assuming that no process fails in the trying, critical, or exit sections, every process
in the trying section eventually enters its critical section. By the algorithm, the only possiblity
for a process in the trying section not to enter its critical section is to block in line 8 at some
level ` = 0, . . . , N−2. A process pi blocks at level ` if, after setting level[i] to ` and waiting[`]
to i, it keeps reading waiting[`] and level[0, . . . , N − 1] to always find waiting[`] == 1 and
level[j] ≥ ` for some j 6= i. Since, prior to this, every process pi writes i in waiting[`], at
most one process can be blocked at any given level.

2

Suppose, by contradiction that there exists a non-empty set B of blocked processes, and let
pI be the process that is blocked at the highest level `. Let t be the time when pi writes i to
waiting[`] for the last time. Thus, any process pj that reaches level ` must have written j to
waiting[`] before t: otherwise, pi would eventually read a value other than i and “unblock”.
Moreover, any such process that pj must eventually complete level ` and proceed to the critical
section: otherwise, it would block at a level higher than `, violating our choice of pi.

Thus, eventually, pi would find out that no other process has reached level ` and proceed to
level ` + 1 or its critical section if ` = N − 2—a contradiction.

3

