SE205: Solutions for Quiz 1

1 2-process Peterson’s algorithm
Suppose that pg executes the first two lines of its algorithm in the reverse order:

1. turn = 1;

2. flag[0] = true;

Then the following execution scenario is possible:

turn = 1 flagl0] = true !

Po @ @ 4] =
read turn =0 1
read flag[0] = false ‘

P @ : =
flag[l] = true turn=0 !

both py and py are in CS

(Note that we do not care about the order in which the first two lines are executed by p;.)

Here pg sets turn to 1, then p; sets turn to 0, £lag[0] to true (the order in which these two
operations are performed does not matter) reads false in flag[0] and proceeds to the critical
section. Then pg reads 0 in turn and also proceeds to the critical section—a contradiction.

2 N-process Peterson’s algorithm

Algorithm 1 N-process Peterson’s algorithm
1: Shared variables:

levell0,...,N —1] = {-1}

waiting0,...,N —2] = {-1}

4: Trying section: code for process p;:

5 for m from 0 to N — 2 do

6: levelli] = m;

7 waiting|m] = i;

8 while(waiting[m| == i && (I k # i : levellk] >=m));

9: Critical section:

10: ...
11: Exit section:
12: 1level[i] = —1;

Mutual exclusion. To prove that Algorithm 1 ensures the property of mutual exclusion,
suppose, by contradiction, that it has an execution in which two processes are in their critical
sections at some time t.

We say that a process p; reached level ¢ (¢ =0,...,N — 1) if it is in the critical section or
levell[i] stores £ or a higher value. Thus, by our assumption, two processes reached level N — 1
at the same time.

Intuitively, a process that reached level £ is in the critical section or in the waiting phase
£ or higher. By the algorithm, a process p; executing its ¢-th waiting phase should wait for
every process that reached level £ to complete their critical sections, unless there is another
process that wrote to waiting[l] after p;.

Suppose, inductively, that for some / = N — 1 down to 1, a set S of N — ¢ + 1 processes
reached level ¢ or higher at some time ¢,. (In the base case, f = N — 1 and we have a set of 2
such processes.)

By the algorithm, before time ty, every process p; € S sets level[i] to £ — 1 and writes i
in waiting[¢ — 1]. Without loss of generality, assume that p; is the last process in S to update
waiting[¢ — 1] before ty, and let ¢’ be the time when this happens. Hence, at time ¢', for every
other process in p; € S, level[j] stores £ — 1 or a higher value. Indeed, if at time t’, for some
process pj € S, levellj] stores a value less than ¢ — 1, then to reach level £ by time ¢, p; must
write j to waiting[¢ — 1] at some time between ¢’ and ty, contradicting the assumption that p;
is the last process in S to write to waiting[¢ — 1] before ;.

Since |S| = N — ¢+ 1 and ¢ < N — 1, there is at least one process in S besides p;. Thus,
to reach level ¢, between ¢ and t;, p; must have read a value other than i in waiting[¢ — 1]:
otherwise, p; would have to wait until all other processes in S complete their critical sections
and set their level variables to —1. Thus, at some time ¢,_; between t' and ty, a process py ¢ S
has written k in waiting[¢ — 1]. Thus, at time ¢y_1, at least |S|+1 = N — £+ 2 processes reached
level ¢ — 1.

S reached level £ —1 S U {p;} reached level £ — 1 S reached level £
1 ' 1
1
1 1
M ' ' '
] ! . 1
s o : -
- 1
t , te
i e @ =
waiting[l — 1] =i tos
@ =

waiting[l — 1] =k

By induction, we derive that at some time tg, at least N 4+ 1 process must have reached level
0, contradicting the fact that we have exactly N processes.

Starvation-freedom. Now we prove that Algorithm 1 ensures the property of starvation-
freedom, i.e., assuming that no process fails in the trying, critical, or exit sections, every process
in the trying section eventually enters its critical section. By the algorithm, the only possiblity
for a process in the trying section not to enter its critical section is to block in line 8 at some
level £ =0,...,N—2. A process p; blocks at level /¢ if, after setting level[i| to £ and waiting[/]
to 4, it keeps reading waiting[f] and level[0,..., N — 1] to always find waiting[¢] == 1 and
level[j] > ¢ for some j # i. Since, prior to this, every process p; writes ¢ in waitingl[/], at
most one process can be blocked at any given level.

Suppose, by contradiction that there exists a non-empty set B of blocked processes, and let
pr be the process that is blocked at the highest level £. Let t be the time when p; writes ¢ to
waiting[/] for the last time. Thus, any process p; that reaches level £ must have written j to
waiting[l| before t: otherwise, p; would eventually read a value other than i and “unblock”.
Moreover, any such process that p; must eventually complete level £ and proceed to the critical
section: otherwise, it would block at a level higher than /¢, violating our choice of p;.

Thus, eventually, p; would find out that no other process has reached level £ and proceed to
level £ + 1 or its critical section if £ = N — 2—a contradiction.

