
© 2017 P. Kuznetsov

Concurrent systems 
  

Correctness: safety and liveness

SE205, P1, 2017

2 ©	2017	P.	Kuznetsov		

Shared memory
§  Processes communicate by applying operations on

and receiving responses from shared objects
§  A shared object instantiates a state machine

ü States
ü Operations/Responses
ü Sequential specification

§  Examples: read-write registers, TAS,CAS,LL/SC,…

P1

P2

P3

O1 Oj OM … …

3

Implementing an object
Using base objects, create an illusion that an object O

is available

deq()	

x	

enq(x)	

ok	

empty	deq()	
Queue	

Base		
objects	

©	2017	P.	Kuznetsov		

4

Correctness
What does it mean for an implementation to be

correct?

§  Safety ≈ nothing bad ever happens
ü Can be violated in a finite execution, e.g., by

producing a wrong output or sending an incorrect
message

ü What the implementation is allowed to output

§  Liveness ≈ something good eventually happens
ü Can only be violated in an infinite execution, e.g.,
by never producing an expected output
ü Under which condition the implementation outputs

©	2017	P.	Kuznetsov		

5

In our context
Processes access an (implemented) abstraction

(e.g., bounded buffer, a queue, a mutex) by
invoking operations

§  An operation is implemented using a sequence
of accesses to base objects
§ E.g.: a bounded-buffer using reads, writes, TAS, etc.

§  A process that never fails (stops taking steps) in
the middle of its operation is called correct
§ We typically assume that a correct process invokes

infinitely many operations, so a process is correct if it
takes infinitely many steps

©	2017	P.	Kuznetsov		

6

Runs
A system run is a sequence of events

ü E.g., actions that processes may take

Σ – event alphabet
ü  E.g., all possible actions

Σω is the set all finite and infinite runs

A property P is a subset of Σω
An implementation satisfies P if every its run is

in P

©	2017	P.	Kuznetsov		

7

Safety properties
P is a safety property if:

§  P is prefix-closed: if σ is in P, then each prefix of
σ is in P

§  P is limit-closed: for each infinite sequence of
traces σ0, σ1, σ2,…, such that each σi is a prefix
of σi+1 and each σi is in P, the limit trace σ is in P

(Enough to prove safety for all finite traces of an
algorithm)

©	2017	P.	Kuznetsov		

8

Liveness properties

P is a liveness property if every finite σ (in Σ*,
the set of all finite histories) has an extension
in P

(Enough to prove liveness for all infinite runs)

A liveness property is dense: intersects with
extensions of every finite trace

©	2017	P.	Kuznetsov		

9

Safety? Liveness?

§  Processes propose values and decide on values
(distributed tasks):

Σ=Ui,v{proposei(v),decidei(v)}U{base-object accesses}

ü Every decided value was previously proposed
ü No two processes decide differently
ü Every correct (taking infinitely many steps)

process eventually decides
ü No two correct processes decide differently

©	2017	P.	Kuznetsov		

10

Quiz 1: safety

1.  Let S be a safety property. Show that if all finite
runs of an implementation I are safe (belong to
S) then all runs of I are safe

2.  Show that every unsafe run σ has an unsafe
finite prefix σ’: every extension of σ’ is unsafe

3.  Show that every property is an intersection of a
safety property and a liveness property

©	2017	P.	Kuznetsov		

11

How to distinguish safety and liveness: 
rules of thumb

Let P be a property (set of runs)
§  If every run that violates P is infinite

ü P is liveness
§  If every run that violates P has a finite prefix

that violates P
ü P is safety

§  Otherwise, P is a mixture of safety and
liveness

© 2017 P. Kuznetsov

12

Example: implementing a
concurrent queue

What is a concurrent FIFO queue?

ü FIFO means strict temporal order
ü Concurrent means ambiguous temporal order

13 © Nir Shavit

When we use a lock…
shared

 items[];
 tail, head := 0

deq()

 lock.lock();
 if (tail = head)
 x := empty;
 else
 x := items[head];
 head++;
 lock.unlock();
 return x;

14 © Nir Shavit

Intuitively…
deq()

 lock.lock();
 if (tail = head)
 x := empty;
 else
 x := items[head];
 head++;
 lock.unlock();
 return x;

All	modifica:ons		
of	queue	are	done		
in	mutual	exclusion	

15

time

It Works

q.deq

q.enq

 enq deq

 lock() unlock()

lock() unlock()
Behavior	is	
“Sequen:al”	

enq

deq

We	describe	
the	concurrent	via	the	sequen:al		

© Nir Shavit

16

Linearizability (atomicity):  
A Safety Property

§  Each complete operation should
ü “take effect”
ü Instantaneously
ü Between invocation and response events

§  The history of a concurrent execution is
correct if its “sequential equivalent” is correct

§  Need to define histories first

17 ©	2017	P.	Kuznetsov		

Histories

A history is a sequence of invocation and
responses
E.g., p1-enq(0), p2-deq(),p1-ok,p2-0,…

A history is sequential if every invocation is
immediately followed by a corresponding
response
E.g., p1-enq(0), p1-ok, p2-deq(),p2-0,…

(A sequential history has no concurrent operations)

18 ©	2017	P.	Kuznetsov		

Histories

p1

p2

p3

 enq(1) ok

deq() 0

 enq(0) ok

 deq() 0 deq()

	History:		
p1-enq(0);	p1-ok;	p3-deq();	p1-enq();	p3-0;				p3-deq();	p1-ok;	p2-

deq();	p2-0	

19 ©	2017	P.	Kuznetsov		

Histories

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 deq() 0 deq()

	History:		
p1-enq(0);	p1-ok;	p3-deq();	p3-0;	p1-enq(1);				p1-ok;	p2-deq();	p2-1;	

p3-deq();		

20

Legal histories

A sequential history is legal if it satisfies the sequential
specification of the shared object

§  (FIFO) queues:
Every deq returns the first not yet dequeued value

§  Read-write registers:
Every read returns the last written value

(well-defined for sequential histories)

21

Complete operations and completions

Let H be a history
An operation op is complete in H if H contains

both the invocation and the response of op
A completion of H is a history H’ that includes

all complete operations of H and a subset of
incomplete operations of H followed with
matching responses

22

Complete operations and completions

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 enq(3) ok deq()

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;
p3-deq(); p1 –ok; p2-deq(); p2-1;

23

Complete operations and completions

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 enq(3) ok deq()

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;
p3-deq(); p1 –ok; p2-deq(); p2-1; p3-100

 100

24

Complete operations and completions

p1

p2

p3

 enq(1) ok

deq() 1

 enq(0) ok

 enq(3) ok

 p1-enq(0); p1-ok; p3-enq(3); p1-enq(1); p3-ok;
p1 –ok; p2-deq(); p2-1;

25

Equivalence
Histories H and H’ are equivalent if for all pi

H | pi = H’| pi

E.g.:

H=p1-enq(0); p1-ok; p3-deq(); p3-3
H’=p1-enq(0); p3-deq(); p1-ok; p3-3

26

Linearizability (atomicity)

A history H is linearizable if there exists a sequential
legal history S such that:

§  S is equivalent to some completion of H
§  S preserves the precedence relation of H:

op1 precedes op2 in H => op1 precedes op2 in S

What if: define a completion of H as any complete
extension of H?

27 ©	2017	P.	Kuznetsov		

Linearization points
An implementation is linearizable if every history

it produces is linearizable

Informally, the complete operations (and some
incomplete operations) in a history are seen
as taking effect instantaneously at some time
between their invocations and responses

Operations ordered by their linearization points
constitute a legal (sequential) history

28 ©	2017	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 enq(1) ok

deq() 2

 enq(0) ok

 deq() 0 deq() 1

 enq(2) ok

29 ©	2017	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok

30 ©	2017	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok

31 ©	2017	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok

32 ©	2017	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 0 write(3) ok Incorrect value!

33

Linearizable?

p1

p2

p3

 write(1) ok

read() 1

 write(0) ok

 read() 1 write(3)

34 ©	2017	P.	Kuznetsov		

Linearizable?

p1

p2

p3

 write(1) ok

read() 3

 write(0) ok

 read() 1 write(3)

35 ©	2017	P.	Kuznetsov		

Linearizable?

p1

p2

p3

write(1) ok

read() 0

 write(0) ok

 read() 1

36

Sequential consistency
A history H is sequentially consistent if there exists a

sequential legal history S such that:
§  S is equivalent to some completion of H
§  S preserves the per-process order of H:

pi executes op1 before op2 in H => pi executes op1
before op2 in S

Why (strong) linearizability and not (weak)
sequential consistency?

©	2017	P.	Kuznetsov		

37

Linearizability is compositional!
§  Any history on two linearizable objects A and B is a

history of a linearizable composition (A,B)

§  A composition of two registers A and B is a two-field
register (A,B)

p1

p2

 write(B,1) ok

read(A) 1

 write(A,1) ok

 read(B) 1

38

Sequential consistency is not!
§  A composition of sequential consistent objects

is not always sequentially consistent!

p1

p2

 write(B,1) ok

read(A) 0

 write(A,1) ok

 read(B) 1

39

Linearizability is nonblocking
Every incomplete operation in a finite history
can be independently completed

What safety property is blocking?

©	2017	P.	Kuznetsov		

p1

p2

enq(2) ok

 enq(1) ok deq()

40

Linearizability as safety
§  Prefix-closed: every prefix of a linearizable

history is linearizable
§  Limit-closed: the limit of a sequence of

linearizable histories is linearizable

(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if
all its finite histories are linearizable

©	2017	P.	Kuznetsov		

41

Why not using one lock?
§  Simple – automatic transformation of the

sequential code
§  Correct – linearizability for free
§  In the best case, starvation-free: if the lock is
“fair” and every process cooperates, every
process makes progress

§  Not robust to failures/asynchrony
ü  Cache misses, page faults, swap outs

§  Fine-grained locking?
ü  Complicated/prone to deadlocks

©	2017	P.	Kuznetsov		

42

Liveness properties
§  Deadlock-free:

ü If every process is correct*, some process makes progress**
§  Starvation-free:

ü If every process is correct, every process makes progress

§  Lock-free (sometimes called non-blocking):
ü Some correct process makes progress

§  Wait-free:
ü Every correct process makes progress

§  Obstruction-free:
ü Every process makes progress if it executes in isolation (it is the only

correct process)

* A process is correct if it takes infinitely many steps.
** Completes infinitely many operations.

©	2017	P.	Kuznetsov		

43

Periodic table of liveness properties  
[©	2013	Herlihy&Shavit]

© 2017 Kuznetsov

independent
non-blocking

dependent
non-blocking

dependent
blocking

every process
makes progress

wait-freedom obstruction-
freedom

starvation-freedom

some process
makes progress

lock-freedom ? deadlock-freedom

What are the relations (weaker/stronger) between these
progress properties?

44

Liveness properties: relations
Property A is stronger than property B if every run satisfying A also satisfies B (A is a
subset of B).
A is strictly stronger than B if, additionally, some run in B does not satisfy A, i.e., A is
a proper subset of B.

For example:

§  WF is stronger than SF
Every run that satisfies WF also satisfies SF: every correct process makes
progress (regardless whether processes cooperate or not).
WF is actually strictly stronger than SF. Why?

§  SF and OF are incomparable (none of them is stronger than the other)
There is a run that satisfies SF but not OF: the run in which p1 is the only
correct process but does not make progress.
There is a run that satisfies OF but not SF: the run in which every process is
correct but no process makes progress

© 2017 P. Kuznetsov

45

Quiz 2: liveness

§  Show how the elements of the “periodic table of
progress” are related to each other

ü Hint: for each pair of properties, A and B, check if any run
of A is a run of B (A is stronger than B), or if there exists a
run of A that is not in B (A is not stronger than B)

ü Can be shown by transitivity: if A is stronger than B and B
is stronger than C, then A is stronger than C

© 2017 P. Kuznetsov

