
© 2017 P. Kuznetsov

Concurrent Computing  
 

Introduction

SE205, P1, 2017

2 ©	2017	P.	Kuznetsov		

Administrivia
§  Language: (fr)anglais?
§  Lectures: Fridays (15.09-03.11), 13:30-16:45, Amphi

Grenat
§  Web page: https://se205.wp.imt.fr/

§  Exam: 03.11, 15:15-16:45

§  Office hours (Petr Kuznetsov)
ü C213-2, appointments by email to petr.kuznetsov@telecom-

paristech.fr

3

Literature (for my part)

§  Lecture notes: Concurrent computing. R. Guerraoui, P.
Kuznetsov (https://www.dropbox.com/s/oiu6wp7oesngh8c/
book-ln.pdf?dl=0)

§  M. Herlihy and N. Shavit. The art of multiprocessor
programming. Morgan Kaufman, 2008 (library)

© 2017 P. Kuznetsov

4

Concurrency is everywhere!

§  Multi-core processors
§  Sensor networks
§  Internet
§  Basically everything

related computing
©	2017	P.	Kuznetsov		

5

Communication models
§  Shared memory

ü Processes apply (read–write)
operations on shared variables

ü Failures and asynchrony
§  Message passing

ü Processes send and receive
messages

ü Communication graphs
ü Message delays

©	2017	P.	Kuznetsov		

6

The concurrency challenge

7

 
The case against the

“washing machine science”
§  Single-processor performance does

not improve
§  But we can add more cores
§  Run concurrent code on multiple

processors

Can we expect a proportional
speedup? (ratio between sequential
time and parallel time for executing
a job)

©	2017	P.	Kuznetsov		

8

Example: painting in parallel
§  5 friends want to paint 5 equal-size rooms,

one friend per room
ü Speedup = 5

§  What if one room is twice as big?

©	2017	P.	Kuznetsov		

9

Amdahl’s Law

§  p – fraction of the work that can be done in
parallel (no synchronization)

§  n - the number of processors
§  Time one processor needs to complete the

job = 1

10

A better solution
§  When done, help the others

ü All 5 paint the remaining half-room in parallel
§  Communication and agreement is required!
§  This is a hard task

§  And this is what synchronization algorithms try to
achieve!

©	2017	P.	Kuznetsov		

11

Challenges

§  What is a correct implementation?
ü Safety and liveness

§  What is the cost of synchronization?
ü Time and space lower bounds

§  Failures/asynchrony
ü Fault-tolerant concurrency?

§  How to distinguish possible from impossible?
ü Impossibility results

©	2017	P.	Kuznetsov		

12

Distributed ≠ Parallel

§  The main challenge is synchronization

§  “you know you have a distributed system
when the crash of a computer you’ve never
heard of stops you from getting any work
done” (Lamport)

13

History
§  Dining philosophers, mutual exclusion

(Dijkstra)~60’s
§  Distributed computing, logical clocks

(Lamport), distributed transactions (Gray)
~70’s

§  Consensus (Lynch) ~80’s
§  Distributed programming models, since

~90’s
§  Multicores/manycores now

14

Why synchronize ?

§  Race condition: results depend on the
scheduling

§  Synchronization: resolving the races

§  A race-prone portion of code critical
section
ü Must be executed sequentially

§  Synchronization problems: mutual
exclusion, readers-writers, producer-
consumer, …

© 2017 P. Kuznetsov

15

Dining philosophers 
(Dijkstra, 1965)

© 2017 P. Kuznetsov

§  To make progress (to eat) each process
(philosopher) needs two resources (forks)

§  Mutual exclusion: no fork can be shared
§  Progress conditions:

ü Some philosopher does not starve (deadlock-
freedom)

ü No philosopher starves (starvation-freedom)

Edsger Dijkstra
1930-2002

16

Mutual exclusion

§  No two processes are in their critical sections (CS) at the same
time

+
§  Deadlock-freedom: at least one process eventually enters its CS
§  Starvation-freedom: every process eventually enters its CS

ü Assuming no process blocks in CS or Entry section

§  Originally: implemented by reading and writing
ü Peterson’s lock, Lamport’s bakery algorithm

§  Currently: in hardware (mutex, semaphores)

© 2017 P. Kuznetsov

17

Peterson’s lock: 2 processes

P0:

flag[0] = true;
turn = 1;
while (flag[1] and turn==1)
{

// busy wait
}
// critical section
…
// end of critical section
flag[0] = false;

© 2017 P. Kuznetsov

P1:

flag[1] = true;
turn = 0;
while (flag[0] and turn==0)
{

// busy wait
}
// critical section
…
// end of critical section
flag[1] = false;

bool flag[0] = false;
bool flag[1] = false;
int turn;

18

Peterson’s lock: N ≥ 2 processes
// initialization
level[0..N-1] = {-1}; // current level of processes 0...N-1
waiting[0..N-2] = {-1}; // the waiting process in each level

// 0...N-2

// code for process i that wishes to enter CS
for (m = 0; m < N-1; m++) {
 level[i] = m;
 waiting[m] = i;
 while(waiting[m] == i &&(exists k ≠ i: level[k] ≥ m)) {
 // busy wait
 }
}
// critical section
level[i] = -1; // exit section

© 2017 P. Kuznetsov

19

Bakery [Lamport’74,simplified]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS

flag[i] = true; //enter the “doorway”
label[i] = 1 + max(label[1], ..., lebel[N]); //pick a ticket
while (for some k ≠ i: flag[k] and (label[k],k)<<(label[i],i));
// wait until all processes “ahead” are served
…
// critical section
…
flag[i] = false; // exit section

© 2017 P. Kuznetsov

Processes are served in the “ticket order”: first-come-first-serve

20

Readers-writers problem

§  Writer updates a file
§  Reader keeps itself up-to-date
§  Reads and writes are non-atomic!

Why synchronization? Inconsistent values might be read

Writer

T=0: write(“sell the cat”)

T=2: write(“wash the dog”)

Reader

T=1: read(“sell …”)

T=3: read(“… the dog”)

Sell the dog?

© 2017 P. Kuznetsov

21

Producer-consumer (bounded buffer) problem

§  Producers put items in the buffer (of bounded size)
§  Consumers get items from the buffer
§  Every item is consumed, no item is consumed twice

(Client-server, multi-threaded web servers, pipes, …)
Why synchronization? Items can get lost or consumed twice:

Producer
/* produce item */
while (counter==MAX);
buffer[in] = item;
in = (in+1) % MAX;
counter++;

Consumer
/* to consume item */
while (counter==0);
item=buffer[out];
out=(out+1) % MAX;
counter--;
/* consume item */Race!

© 2017 P. Kuznetsov

22

Synchronization tools

§  Busy-waiting (TAS)
§  Semaphores (locks), monitors
§  Nonblocking synchronization
§  Transactional memory

© 2017 P. Kuznetsov

23

Busy-wait: Test and Set
§  TAS(X) tests if X = 1, sets X to 1 if not, and returns the old value of X

ü Instruction available on almost all processors

TAS(X):

if X == 1 return 1;
X = 1;
return 0;

atomic

© 2017 P. Kuznetsov

X == 1?

X := 1
no

yes

atomic

1

0

24

Busy-wait: Test and Set

X == 1?

X := 1
no

yes

atomic

shared X:=0

Producer Consumer

while(counter==MAX);
. . .

buffer[in] = item;
. . .

while TAS(X);
counter++;

X:=0;
. . .

while (counter==0);
. . .

item = buffer[out];
. . .

while TAS(X);
counter--;

X:=0;
...

Problems:
•  busy waiting
•  no record of request order (for multiple

producers and consumers)

1

0

© 2017 P. Kuznetsov

25

Semaphores [Dijkstra 1968]: specification
§  A semaphore S is an integer variable accessed (apart from initialization) with two

atomic operations P(S) and V(S)
ü  Stands for “passeren” (to pass) and “vrijgeven” (to release) in Dutch

§  The value of S indicates the number of resource elements available (if positive), or
the number of processes waiting to acquire a resource element (if negative)

 
Init(S,v){ S := v; }

P(S){
while S<=0; /* wait until a resource is available */
S--; /* pass to a resource */

}

V(S){
S++; /* release a resource */

}

© 2017 P. Kuznetsov

26

Semaphores: implementation

S is associated with a composite
object:

ü S.counter: the value of the
semaphore

ü S.wq: the waiting queue,
memorizing the processes
having requested a resource
element

Init(S,R_nb) {
S.counter=R_nb;
S.wq=empty;

}
P(S) {

S.counter--;
if S.counter<0{
 put the process in S.wq and wait until
READY;}

}
V(S) {

S.counter++
if S.counter>=0{

mark 1st process in S.wq as
READY;}

}

27

Lock
§  A semaphore initialized to 1, is called a lock (or mutex)

§  When a process is in a critical section, no other process can come in

shared semaphore S := 1

Producer Consumer

while (counter==MAX);
. . .
buffer[in] = item;
. . .
P(S);
counter++;
V(S)
. . .

while (counter==0);
. . .
item = buffer[out];
. . .
P(S);
counter--;
V(S);
...

Problem: still waiting until the buffer is ready

© 2017 P. Kuznetsov

28

Semaphores for producer-consumer
§  2 semaphores used :

ü empty: indicates empty slots in the buffer (to be used by the producer)
ü full: indicates full slots in the buffer (to be read by the consumer)

shared semaphores empty := MAX, full := 0;

Producer Consumer

P(empty)
buffer[in] = item;
in = (in+1) % MAX;
V(full)

P(full);
item = buffer[out];
out=(out+1) % MAX;
V(empty);

© 2017 P. Kuznetsov

29

Potential problems with semaphores/locks
§  Blocking: progress of a process is conditional (depends on other processes)
§  Deadlock: no progress ever made

§  Starvation: waiting in the waiting queue forever

X1:=1; X2:=1

Process 1 Process 2

...
P(X1)
P(X2)
critical section
V(X2)
V(X1)
...

...
P(X2)
P(X1)
critical section
V(X1)
V(X2)
...

© 2017 P. Kuznetsov

30

Other problems of blocking synchronization

§  Priority inversion
ü High-priority threads blocked

§  No robustness
ü Page faults, cache misses etc.

§  Not composable

Can we think of anything else?

© 2017 P. Kuznetsov

31

Non-blocking algorithms
A process makes progress, regardless of the other processes

shared buffer[MAX]:=empty; head:=0; tail:=0;

Producer put(item) Consumer get()

if (tail-head == MAX){
return(full);

}
buffer[tail%MAX]=item;
tail++;
return(ok);

if (tail-head == 0){
return(empty);

}
item=buffer[head%MAX];
head++;
return(item);

Problems:
•  works for 2 processes but hard to say why it works J
•  multiple producers/consumers? Other synchronization pbs?

(stay in class to learn more)

© 2017 P. Kuznetsov

32

Transactional memory
§  Mark sequences of instructions as an atomic transaction, e.g., the resulting

producer code:
atomic {

if (tail-head == MAX){
return full;
}
items[tail%MAX]=item;
tail++;

}
return ok;

§  A transaction can be either committed or aborted
ü Committed transactions are serializable
ü Let the transactional memory (TM) care about the conflicts
ü Easy to program, but performance may be problematic

© 2017 P. Kuznetsov

33

Summary

§  Concurrency is indispensable in programming:
ü Every system is now concurrent
ü Every parallel program needs to synchronize
ü Synchronization cost is high (“Amdahl’s Law”)

§  Tools:
ü Synchronization primitives (e.g., monitors, TAS, CAS, LL/SC)
ü Synchronization libraries (e.g., java.util.concurrent)
ü Transactional memory, also in hardware (Intel Haswell, IBM Blue Gene,…)

§  Coming later:
ü Read-write transformations and snapshot memory
ü Nonblocking synchronization

© 2017 P. Kuznetsov

34

Quiz
§  What if we reverse the order of the first two lines the 2-

process Peterson’s algorithm

 Would it work?

§  Prove that Peterson’s N-process algorithm ensures:
ü mutual exclusion: no two processes are in the critical section at

a time
ü starvation freedom: every process in the trying section

eventually reaches the critical section (assuming no process
fails in the trying, critical, or exit sections)

© 2017 P. Kuznetsov

P0:
turn = 1;
flag[0] = true;
…

P1:
turn = 0;
flag[1] = true;
…

35

Bakery [Lamport’74,original]
// initialization
flag: array [1..N] of bool = {false};
label: array [1..N] of integer = {0}; //assume no bound

// code for process i that wishes to enter CS
flag[i] = true; //enter the doorway
label[i] = 1 + max(label[1], ..., label[N]); //pick a ticket
flag[i] = false; //exit the doorway
for j=1 to N do {

while (flag[j]); //wait until j is not in the doorway
while (label[j]≠0 and (label[j],j)<<(label[i],i));
// wait until j is not “ahead”

}
…
// critical section
…
label[i] = 0; // exit section

© 2017 P. Kuznetsov

Ticket withdrawal is “protected” with flags: a very useful trick

