
Name:

SE205 - EXAM

General Instructions

• Fill in your name at the top on each page.

• Work on your own.

• You may use the lecture slides and your TD notes.

• Cell phones and all other electronic devices switched off.

• The presentation style and clarity of your answers will be taken into account.

• Only accurate and well-justified responses will be considered.

• The exam is structured in 5 parts.

• You can get a maximum of 15 points.

• You have 90 minutes.

Question Points Score

Dependencies 1

Interleavings 11/2

Atomics 11/2

Synchronization 2

Access the clock in C 1/2

Delay until a given instant 11/2

Implement a periodic thread 1

Synchronization 3

Algorithm 2

Actors 1

Total: 15

1/11



1 Dependencies

Code Snippet

Consider the following code snippet for the questions below:

void inner_sum(int *a, int n) {
for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {
a[i] += a[j];

}
}

}

Questions

1. (1 point) Dependencies

Which loop-carried dependencies are present between successive iterations of the outer
loop (counting on i)?

© Anti dependencies (Write-After-Read) between the definition of a[i] in the first
iteration of the inner loop on the third iteration of the outer loop (j=0 and i=2)
and the use of a[j] in the third iteration of the inner loop on the first iteration of
the outer loop (j=2 and i=0).

© As we cannot say anything about the pointer a, we cannot say anything about
the loop-carried dependencies.

© Output dependencies (Write-after-Write) between the definition of a[i] on the
last iteration of the inner loop on an iteration i of the outer loop (j=n-1 and i=i)
and the definition of a[i] on the first iteration of the subsequent iteration of the
outer loop (j=0 and i=i+1).

© No loop-carried dependencies exist with regard to the outer loop, only with re-
gard to the inner-most loop.

© True dependencies (Read-After-Write) with regard to the increment of a[i] be-
tween subsequent iterations of the inner loop for an iteration i of the outer loop.

© The program contains a race condition and thus is invalid.

2/11



Name:

2 The Shared-Memory Model

Code Snippet

Consider the following code for the subsequent questions. The code shows two threads,
running in parallel, as well as some definitions of global variables shared by those threads:

1 #define ITERATIONS 1000
2
3 unsigned int readIdx = 0;
4 unsigned int writeIdx = 0;
5 unsigned int numItems = 0;
6
7 #define SIZE 100
8 int sharedData[SIZE];

Code of Thread 1

9 for(unsigned int i(0); i < ITERATIONS; i++) {
10 // wait for data to become available
11 while (numItems == 0);
12
13 // read from the circular buffer and print it
14 std::cout << sharedData[readIdx] << "\n";
15
16 // increment the read index and update the item counter
17 readIdx = (readIdx + 1) % SIZE;
18 numItems = numItems - 1;
19 }

Code of Thread 2

20 for(unsigned int i(0); i < ITERATIONS; i++) {
21 // wait until space is available in the circular buffer
22 while (numItems == SIZE);
23
24 // write random data into the circular buffer
25 sharedData[writeIdx] = random();
26
27 // update the write index and item counter
28 writeIdx = (writeIdx + 1) % SIZE;
29 numItems = numItems + 1;
30 }

3/11



Questions

2. (1 1/2 points) Interleavings

Find an interleaving explaining an execution where thread 2 adds 1000 values to the
queue, but thread 1 only prints 999 numbers and then ends up waiting infinitely. It is
sufficient to refer to line numbers involving the variable numItems.

3. (1 1/2 points) Atomics

How can the code from above be made thread safe? Assume that only the two threads
shown here are executed. Your solution should only use functions provided by C11 and
be minimal, i.e., you should propose only those modifications that are strictly necessary.
Justify your solution.

4/11



Name:

4. (2 points) Synchronization

Is your solution from above safe when more than two threads access the queue in parallel?
Assume that all sorts of combinations of the two thread types from above might appear,
even multiple times. If the program is safe, explain why. Otherwise, explain the problem.

5/11



3 POSIX Concurrency Problem

Bob is in charge of a POSIX application in which several functions execute periodically,
their execution being interlaced. This code does not use POSIX threads yet. Bob must
port this application to a multi-processor platform so that it can take advantage of real
parallelism. Bob needs help! The following questions aim to address his problem progres-
sively. All answers must rely on the lecture material or on the previous questions.

Questions

5. (1/2 point) Access the clock in C

Help Bob implementing a clock() function for accessing the system clock (the returned
value is in milliseconds). Your answer must rely on the lecture. In the following questions,
Bob will use this clock() method to access the system clock. Complete the function
below:

long clock(){

};

6. (1 1/2 points) Delay until a given instant

Help Bob implementing a delay_until(long t) function in order to wait until time
instant t (this time value is in ms). Your answer must rely on the lecture material or on
the previous questions. Next, Bob will use only this delay_until(long t) function in
order to wait until time instant t. Complete the function from below:

void delay_until(long t){

};

6/11



Name:

7. (1 point) Implement a periodic thread

Help Bob implementing a periodic C thread and, in particular, its main function main_worker
that executes the work() function regularly, at each interval (period) provided by the arg
parameter. Your answer must rely on the lecture material or on the previous questions.

void * main_worker (void * arg) {
long period = (long)(long *)(arg);
long t = clock() + period;

while(1){
work();
/* wait until the end of the period */

/* determine the instant of the next period */

};
};

7/11



4 Java Concurrency

In the following exercise we want to extend an existing implementation of a sorted single-
linked list. In the provided code (see below), two nodes representing the minimum and
maximum int values are always present in the list (see FineGrainedList constructor).
We have two methods to add an item and remove an item. Each new item is inserted in
the list, while keeping it sorted.

We want to protect this list against concurrent accesses through fine-grained synchroniza-
tion. This means that, instead of using a single lock to synchronize every access to the
list, we split the list into independently synchronized nodes, ensuring that method calls
interfere only when trying to access the same node at the same time.

A Node object includes an item represented as an int, a reference to the next node
and a ReentrantLock (or a Lock) mutex. This mutex is intended to protect the node
against concurrent accesses. It protects the attributes item and next of the current node.

Note that to add a new node between two nodes A and B, we must lock the previous
node A, then the current node B, in precisely this order to prevent deadlocks. To modify
node B, we also have to lock A and then B, B because we modify node B, and A in order
to prevent any remove operation on B.

We have two special nodes head (with minimum integer value MIN) and tail (with max-
imum integer value MAX). These two nodes are always present. To add a new item to
an empty list, we first lock the head node, then the tail node (actually the head.next
node, as the list is empty) to finally insert the new node between the head node and the
tail node.

Questions

8. (3 points) Synchronization

Extend the existing code below in order to allow concurrent fine-grained synchronization
for the given list instance shown here:

MIN 42 MAX

The code is provided on the next page −→

8/11



Name:

1 public class Node {

2 ReentrantLock mutex;

3 int item;

4 Node next;

5 Node(int item){

6 this.item = item;

7 this.mutex = new ReentrantLock();

8 }

9 }

10 public class FineGrainedList {

11 public Node head;

12 public FineGrainedList(int min, max) {

13 head = new Node(min);

14 head.next = new Node(max);

15 }

16 public boolean add(int item) {

17 Node pred = head;

18 try {

19 Node current = pred.next;

20 try {

21 while (current.item < item) {

22 pred = current;

23 current = current.next;

24 }

25 if (current.item == item) {

26 return false;

27 }

28 Node newNode = new Node(item);

29 newNode.next = current;

30 pred.next = newNode;

31 return true;

32 } finally {

33 }

34 } finally {

35 }

36 }

37 public boolean remove(int item) {

38 Node pred = null, current = null;

39 try {

40 pred = head;

41 current = pred.next;

42 try {

43 while (current.item < item) {

44 pred = current;

45 current = current.next;

46 }

47 if (current.item == item) {

48 pred.next = current.next;

49 return true;

50 }

51 return false;

52 } finally {

53 }

54 } finally {

55 }

56 }

57 }

9/11



5 Algorithms for Concurrent Systems

Our broadcast system implements Ricart-Agrawal’s algorithm with Lamport’s clocks (en-
riched with node ids). We consider a system of 3 nodes N1 to N3. Each node broadcasts
one message: node N1 broadcasts message M1, and so on. Messages are received in
the order given in the following table; the Lamport’s clock of the receiving node is given
between parentheses:

N1 M3 (15) M1 (16) M2 (17)
N2 M2 (16) M1 (17) M3 (18)
N3 M1 (17) M3 (18) M2 (19)

Questions

9. (2 points) Algorithm

According to this algorithm, in which order will these messages be delivered on each
node? Does this algorithm provide a causal order, a total order or both? Only accurate
and well-justified responses will be considered.

10/11



Name:

6 The Message-Passing Model

Questions

10. (1 point) Actors

Explain what an actor is and which actions an actor might perform. Then explain the
relation between the actors’ characteristics and the main guiding principles of the actor
model.

11/11


	Dependencies
	The Shared-Memory Model
	POSIX Concurrency Problem
	Java Concurrency
	Algorithms for Concurrent Systems
	The Message-Passing Model

