
SE205 - TD1 Énoncé

General Instructions

• You can download all source files from:
https://se205.wp.mines-telecom.fr/TD1/

SIMD-like Data-Level Parallelism

Modern processors often come with instruction set extensions that allow to exploit data-level
parallelism. These extensions are often called multimedia extensions or vector extensions,
and basically consist of vector registers and SIMD-like instructions operating on these vector
registers. Intel processors for instance offer several such extensions ranging from MultiMedia
eXtensions (MMX), over Streaming SIMD Extensions (SSE), to the new Advanced Vector Ex-
tensions (AVX). Similar extensions are available for many other architectures, e.g. on ARM
VFP/NEON, on PowerPC AltiVec, on SPARC VIS, on MIPS MDMX/MIPS-3D/MSA.

For the exercises we will rely on Intel’s (pretty old) SSE extension for illustration. SSE provides
8 additional 128-bit registers (%xmm0, . . . , %xmm7). These registers can hold various forms
of vectors, ranging from 16-element vectors, where each element has 8 bits, up to 2-element
vectors, with elements of 64 bits each. The registers can also be used to hold 128-bit scalar
values. The 128-bit values stored in the registers do not give any indication about the actual
vector format used. This is specified by the instructions operating on the registers.

Figure 1: 128-bit registers introduced by SSE
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SSE also introduced vector instructions (in SSE-terminology packed) as well as related in-
structions to create/manipulate vectors and their elements. The most important instructions
(that we will see later on) are described here (attention this is GNU-style assembly, i.e., the
operand order does not match that of the Intel manuals):

movdqu (mem)|%xmms, %xmmd
Move a double quadword from a memory location mem or vector register %xmms to vector
register %xmmd. The memory address may be unaligned.
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movdqu %xmms, (mem)
Move a double quadword from the vector register %xmms to memory location mem. The
memory address may be unaligned.

movdqa %xmms, (mem) and movdqa (mem)|%xmms, %xmmd
Same as movdqu. Memory addresses have to be aligned with the vector size.

paddd (mem)|%xmms, %xmmd
Read a vector from a memory address or the %xmms register and perform a vector ad-
dition with the vector in %xmmd. The result is stored in %xmmd. The vectors consist of 4
elements, 32 bits each.

pmuludq (mem)|%xmms, %xmmd
Read a vector from a memory address or the %xmms register and perform a vector multi-
plication with the vector in %xmmd, considering the even 32-bit elements only. The 64-bit
results are stored in the vector %xmmd. The input vectors consist of 4 elements, 32 bits
each, of which only two are used. The result is a vector with two 64-bit elements.

pshufd imm, (mem)|%xmms, %xmmd
Read a vector from a memory address or the %xmms register and shuffle its elements
based on the immediate operand imm. The result is stored in %xmmd. The vectors consist
of 4 elements, 32 bits each.

punpckldq (mem)|%xmms, %xmmd
Read a vector from a memory address or the %xmms register and interleave the two lower
elements of %xmms with the lower two elements of %xmmd. The result is stored in %xmmd.
The vectors consist of 4 elements, 32 bits each.

psrlq imm, %xmmd
Read a vector from the %xmmd register and shift each of its elements to the right based
on the immediate operand imm, while shifting 0 bits in. The result is stored in %xmmd. The
vector consists of 2 elements, 64 bits each.

You can find more information about SSE on Wikipedia and the website of Intel.

Using the cachegrind Profiler

Valgrind is a very popular tool to find memory leaks in C and C++ programs – just in case
you did not know. Apart from the memory checker, Valgrind also proposes additional tools too
profile programs. One such tool is called Cachegrind. Cachegrind allows you to run a program
and collect statistics about a (simulated) cache and its behavior while executing the program.

The Cachgrind tool can simply be invoked using the following command line:

valgrind --cachegrind-out-file=<your-log-file> --tool=cachegrind <your-program>

This will generate a profile with regard to the memory accesses and the cache behavior of the
given program and store it in the file indicated by the first option (--cachegrind-out-file).

The trace can then be analyzed using the tool kcachegrind by invoking:

2

http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf


Figure 2: The graphical interface of kcachegrind.

kcachegrind <your-log-file>

The information is available for individual functions, which can be selected on the left hand
side. On the right the various forms of cache accesses are shown. For this TD we will mostly
focus on the following fields in the column “Self”, i.e., the third column:

Instruction Fetch The number of instructions executed (lower is better).

Data Read Access The number of data accesses (memory loads) executed (lower is better).

L1 Data Read Miss The number of data accesses that caused a cache miss (lower is better).

Using the Debugger GDB

We will have a look at assembly code in this TD and, probably, will also want to see what that
code is doing. The best way to do this (on Linux) is to use the debugger GDB. Here is a quick
guide, covering only commands needed for this TD. Instead of using GDB from the command
line we will use the graphical front end kdbg. The debugger is invoked using:

kdbg <your-program>

You can find kdbg at: /cal/homes/brandner/opt/kdbg-2.5.5/bin/kdbg

The window then shows the program’s source code, the status of the program, including values
of variables, the call stack, as well as the values of the processor registers.

The source code view allows you to have a look at the corresponding assembly code, by
clicking on the + symbol on the left hand side.
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Figure 3: The graphical interface of kdbg.

You can set a break point using the red button at the top of the window. Simply select a line or
assembly instruction in the source code view and click on the button. The debugger will stop
the program at this point whenever the execution reaches the break point.

You can also look at certain expressions that might be interesting to follow during the program’s
execution in the watch window. Simply type an arbitrary expression into the command line and
click on the add button. For the TD we will want to watch the contents of the SSE vector
registers, and here in particular we want to see them as 4-element vectors of 32-bit integers.
This can be done using the following watch expression: “$xmm0.v4_int32” (since the value is
a vector you need to unfold it to see the element values, also note the $ symbol).

1 Vector Reduction (30 minutes)

Aims: Reason about dependencies in programs with loops.

• Draw a diagram representing the data dependencies of the function vector_reduction_sum
(see below). You can focus on accesses to the variable sum and the array a.

Hint: Pay special attention to the += operator.

• Are there any loop-carried dependencies?

• How does the iteration space graph look like?

• What can you say about the potential for parallelization using SIMD-like vector opera-
tions?
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#include <stdio.h>

/// @param a A vector of integers represented as a simple array
/// @param n Size of the vector
/// @return The sum over all elements in the vector, i.e.,
/// a[1] + a[2] + ... + a[n-1]
int vector_reduction_sum(int *a, int n)
{

int sum = 0;
for(int i = 0; i < n; i++)
sum += a[i];

return sum;
}

/// Compute the sum over all elements of a simple vector and terminate.
/// @return Always returns 0.
int main()
{

// initialize a simple vector
int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// compute and print the sum over all vector elements
int sum = vector_reduction_sum(a, sizeof(a) / sizeof(int));
printf("Sum: %d\n", sum);

return 0;
}

2 Vector Addition (30 minutes)

Aims: Reason about dependencies and relate them to compiler optimizations.

• Without knowing the contents of function main, what can you say about the pointers to
the arrays a, b, and c passed to vector_add (see below)?

• Draw a diagram representing the data dependencies of the function vector_add. You
can focus on accesses to the arrays a, b, and c.

• Compile the program using the following command:

gcc -fopt-info-vec-optimized -std=c99 -fno-inline \
-msse -O3 -g -o vector_addition vector_addition.c

• Inspect the generated assembly code using the following command

objdump -dS vector_addition

Then, verify what the code is doing at runtime using kdbg.

Hint: Look at the assembly code of the addition in the loop. Try to find SSE operations in
the assembly code and use a break point to see whether these instructions are executed.
Try to modify the code and see whether changing the parameters to the function changes
the behavior, e.g., replace parameter dest by src1 in main, . . . .
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• Look at the output of the compiler and the generated assembly code. What did the
compiler do? Did the compiler succeed to vectorize the code? Are all elements added
using vector instructions? It seems that much more code than a simple loop and an
addition is executed, what might be the reason for this?

Hint: Relate the assembly code to the answers you gave to the questions from above.

#include <stdio.h>

/// Add the two vectors a and b element-wise and store the result in vector c.
/// @param c The result of the vector addition.
/// @param a A vector of integers represented as a simple array
/// @param b A vector of integers represented as a simple array
/// @param n Size of the vectors
void vector_add(int *c, int *a, int *b, int n)
{

for(int i = 0; i < n; i++)
c[i] = a[i] + b[i];

}

/// Print the value of each element of a vector.
/// @param v The vector to print.
void vector_print(int *v, int n)
{

printf("(");
for(int i = 0; i < n; i++)
{

if (i == n - 1)
printf("%d)\n", v[i]);

else
printf("%d ", v[i]);

}
}

/// Create two simple vectors, perform an element-wise addition, and print the
/// result.
/// @return Always returns 0.
int main()
{

// initialize two simple vector
int src1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int src2[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

// the size of the vectors
int vsize = sizeof(src1) / sizeof(int);

// allocate space for an additional vector
int dest[vsize];

// perform the vector addition
vector_add(dest, src1, src2, vsize);

// print the vectors
printf("src1: "); vector_print(src1, vsize);
printf("src2: "); vector_print(src2, vsize);
printf("dest: "); vector_print(dest, vsize);

return 0;
}
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3 Matrix Vector Product (30 minutes)

Aims: Reason about memory accesses in loops, vectorization, and cache performance.

• Compile the program using the following command:

gcc -fopt-info-vec-optimized -std=c99 -fno-inline \
-msse -O3 -g -o matrix_vector_multiply matrix_vector_multiply.c

• Recompile the program using the following command:

gcc -fopt-info-vec-missed -std=c99 -fno-inline \
-msse -O3 -g -o matrix_vector_multiply matrix_vector_multiply.c

• Check the compiler messages. The compiler apparently was not able to vectorize the
code. Can you give an explanation?

Hint: Think about the dependencies, the iteration space graph, and the way the elements
in the matrix are accessed in the loop of the function matrix_vector_multiply (no
need to draw any diagram, though).

• Make a copy of the original source file and try to change the source code of the func-
tion such that the compiler can vectorize it. Explain why your modification resolves the
problem from above.

• Compile both programs and run them using cachegrind, as shown be the following
example:

valgrind --cachegrind-out-file=matrix_vector_multiply.cg
--tool=cachegrind ./matrix_vector_multiply
> matrix_vector_multiply.txt

• What do you notice with regard to the number of instructions executed by your two pro-
grams (just look at the function matrix_vector_multiply and ignore the other func-
tions)? What can you say about the data cache behavior?

• Where is most of the speed-up coming from? Is it really due to the vectorization?

#include <stdio.h>
#include <stdlib.h>

/// define the size of the matrices
#define SIZE 500

/// Matrix representation as two-dimensional array
typedef int (*matrix_t)[SIZE];

/// Vector representation as a simple array
typedef int vector_t[SIZE];

/// Multiply matrix m with vector v and store the result in d.
/// @param d The result matrix.
/// @param m The input matrix.
/// @param v The input vector.
void matrix_vector_multiply(matrix_t d, matrix_t m, vector_t v)
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{
for(int i = 0; i < SIZE; i++ )
{

for(int j = 0; j < SIZE; j++ )
{
d[j][i] = m[j][i] * v[i];

}
}

}

/// Initialize a given matrix with random values (module 5).
/// @param a The matrix to initialize.
void matrix_init_rand(matrix_t a)
{

for(int i = 0; i < SIZE; i++ )
{

for(int j = 0; j < SIZE; j++ )
{
a[i][j] = rand() % 5;

}
}

}

/// Print the elements of a matrix.
/// @param m The matrix to print.
void matrix_print(matrix_t m)
{

for(int i = 0; i < SIZE; i++ )
{

for(int j = 0; j < SIZE; j++ )
{
printf("%3d ", m[i][j]);

}
printf("\n");

}
}

/// Allocate a matrix of SIZE x SIZE elements on the heap.
/// @return A pointer to a newly allocated block of memory for a matrix.
matrix_t matrix_alloc()
{

void *p = malloc(sizeof(int) * SIZE * SIZE);
return p;

}

/// Initialize a given vector with random values (module 5).
/// @param v The vector to initialize.
void vector_init_rand(vector_t v)
{

for(int i = 0; i < SIZE; i++ )
{

v[i] = rand() % 5;
}

}

/// Print the value of each element of a vector.
/// @param v The vector to print.
void vector_print(int *v)
{

printf("(");
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for(int i = 0; i < SIZE; i++)
{

if (i == SIZE - 1)
printf("%d)\n", v[i]);

else
printf("%d ", v[i]);

}
}

/// Create an input matrix and vector with random data, multiply them, and
/// display the result.
/// @return Always returns 0.
int main()
{

// allocate two matrices and a vector
matrix_t dest = matrix_alloc();
matrix_t msrc = matrix_alloc();
vector_t vsrc = {0,};

// initialize two of them
matrix_init_rand(msrc);
vector_init_rand(vsrc);

// perform the matrix vector product
matrix_vector_multiply(dest, msrc, vsrc);

// print the matrices and the vector
printf("vsrc:\n"); vector_print(vsrc);
printf("msrc:\n"); matrix_print(msrc);
printf("dest:\n"); matrix_print(dest);

// free dynamically allocated memory
free(dest);
free(msrc);

return 0;
}
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